Was gibt es in Vorlesung 4 zu lernen?

inelastischer Stoß

- keine Energieerhaltung (fast alle Energie kann in Wärme umgewandelt werden)
- Geschwindigkeit Gewehrkugel
- Rakete

Rotationsbewegung

- Umlaufgeschwindigkeit v ändert dauernd die Richtung => beschleunigte Bewegung (Zentripetalbeschleunigung zeigt zur Drehachse)
- Winkelgeschwindigkeit ω entspricht v für Linearbewegungen

Was gibt es in Vorlesung 4 zu lernen?

Zentrifugalkraft

- Trägheitskraft für Drehbewegungen, wirkt nach außen (Hammerwerfer)

Drehmoment

- entspricht der Kraft für Linearbewegungen

Dreharbeit

Drehimpuls

- es gilt ein Erhaltungssatz

Was gibt es in Vorlesung 4 zu lernen?

Trägheitsmoment

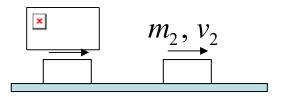
 ersetzt Masse für die Rotation ausgedehnter Körper

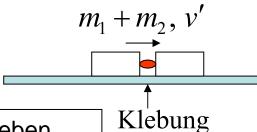
Steinerscher Satz

 aus dem Trägheitsmoment für eine Achse kann Trägheitsmoment für parallele Achse berechnet werden

inelastischer Stoß

nachher





Vollständig inelastisch: beide Massen kleben nachher zusammen

Experiment Ealing-Bahn: $m_1 = m_2$, $v_2 = 0$

Impulserhaltung

$$m_1 v_1 = (m_1 + m_2) v' = 2m_1 v' \implies v' = \frac{1}{2} v_1$$

Energiebilanz

$$E_{kin,vor} = \frac{1}{2}m_1v_1^2 \neq E_{kin,nach} = \frac{1}{2}(m_1 + m_2)v'^2 = \frac{1}{2}(2m_1)(\frac{1}{2}v_1)^2 = \frac{1}{4}m_1v_1^2 = \frac{1}{2}E_{kin,vor}$$

inelastischer Stoß

- es geht kinetische Energie verloren
- es kann ein beträchtlicher Bruchteil sein
- sie wird nicht in potenzielle Energie umgewandelt
- steckt in der Verformung der Knete (Wärme)
- verallgemeinerter Energiesatz gilt weiterhin, aber schwierig anzuwenden
- Knete kann keinen gerichteten Impuls aufnehmen => Impulssatz gilt weiterhin

Bestimmung Kugelgeschwindigkeit

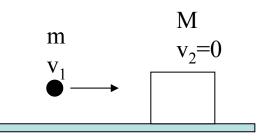
Experiment Ealing-Bahn: mit Luftgewehr in Holzklotz

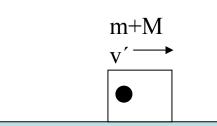
Bestimmung Kugelgeschwindigkeit

Experiment Ealing-Bahn: mit Luftgewehr in Holzklotz

vorher

nachher





Impulserhaltung

$$mv_1 = (m+M)v' \implies v' = \frac{m}{(m+M)}v_1$$

Energiebilanz

$$E_{kin,vor} = \frac{1}{2}mv_1^2 \neq E_{kin,nach} = \frac{1}{2}(m+M)v'^2 = \frac{1}{2}(m+M)(\frac{m}{m+M}v_1)^2 = \frac{1}{2}\frac{m^2}{m+M}v_1^2$$

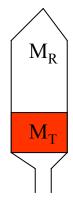
$$\frac{E_{kin,vor}}{E_{kin,nach}} = \frac{m+M}{m} >> 1$$

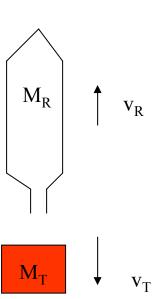
Inelastischer Stoß: Rückstoß

Versuch: Rakete

Wie wird eigentlich eine Rakete angetrieben?

- Treibstoff wird in eine Richtung ausgestoßen => Rakete muss sich in andere Richtung bewegen
- Treibstoff wird kontinuierlich ausgestoßen => Treibstoffgeschwindigkeit nicht konstant => Mathematik etwas aufwändiger





vorher

aller Treibstoff verbraucht

Impulserhaltung (grobe Abschätzung)

$$0 = M_R v_R + M_T v_T \implies v_R = -\frac{M_T}{M_R} v_T$$

Schnelle Rakete mit:

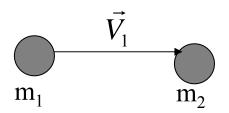
- a) leichter Rakete,
- b) schwerem Treibstoff
- c) hoher Ausstoßgeschwindigkeit!

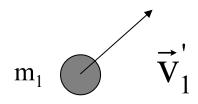
Zusatzinformation: Erweiterung auf zwei-dimensionale Probleme

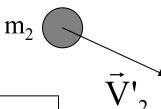
Wenn man Zusammenstöße in der Ebene zulässt, muss man 2 Geschwindigkeitskomponenten betrachten und berücksichtigen, dass es nicht-zentrale Stöße geben kann (z.B. im Billard-Spiel):

nachher:

vorher:







Bei elastischem Stoß gilt der Energiesatz

$$\left| \frac{m_1}{2} \right| \overrightarrow{V}_1 \right|^2 = \frac{m_1}{2} \left| \overrightarrow{V}_1 \right|^2 + \frac{m_2}{2} \left| \overrightarrow{V}_2 \right|^2$$

Der Impulssatz muss vektoriell geschrieben werden und komponentenweise gelöst werden. Außerdem Zusatzbedingung notwendig.

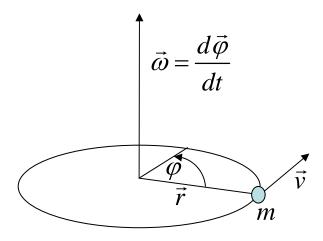
$$m_1 \vec{v}_1 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$$

Rotationsbewegungen

- Betrachte zunächst Rotation eines Massepunktes auf einer Kreisbahn mit Radius r
- Die Geschwindigkeit v des Punktes ändert dauernd ihre Richtung
 => Rotationsbewegungen sind immer beschleunigte Bewegungen
- Für Rotationsbewegungen übernimmt die Winkelgeschwindigkeit ω die Rolle der Geschwindigkeit v bei Linearbewegungen.

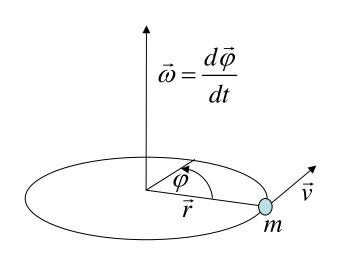
Rotationsbewegungen: Winkelgeschwindigkeit

Für Rotationsbewegungen übernimmt die Winkelgeschwindigkeit ω die Rolle der Geschwindigkeit v bei Linearbewegungen.



Rotationsbewegungen: Winkelgeschwindigkeit

Für Rotationsbewegungen übernimmt die Winkelgeschwindigkeit ω die Rolle der Geschwindigkeit v bei Linearbewegungen.



Umlaufgeschwindigkeit v:

$$T = \frac{2\pi}{\omega}$$
 (Zeit für einen Umlauf)

 $U = 2\pi r$ (Kreisumfang)

$$\text{mit } v = \frac{U}{T} \implies v = \frac{2\pi r\omega}{2\pi} = r\omega$$

In Vektorschreibweise: $\vec{v} = \vec{\omega} \times \vec{r}$

Hergeleitet nur für gleichförmige Rotation! Gilt aber allgemein!

Umlaufgeschwindigkeit ändert dauernd ihre Richtung => Rotationsbewegungen sind beschleunigt!

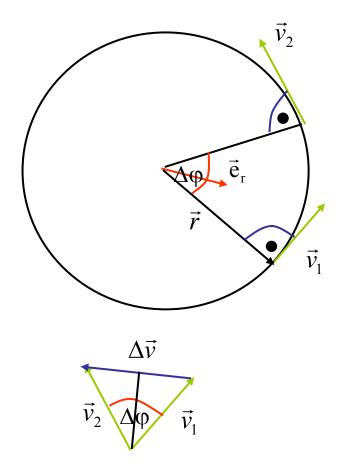
Rotationsbewegungen: Winkelgeschwindigkeit

Analogien zwischen Linearbewegung und Rotationsbewegungen helfen (hoffentlich), sich die einzelnen Formeln und Größen zu merken und zu verdeutlichen,

Analogie: Geschwindigkeit **v** (linear) ⇔
Winkelgeschwindigkeit **ω** (Rotation)

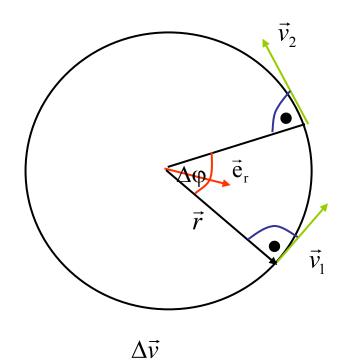
Radial- bzw. Zentripetalbeschleunigung

Die Zentripetalbeschleunigung ist zum Mittelpunkt hin gerichtet.



Radial- bzw. Zentripetalbeschleunigung

Die Zentripetalbeschleunigung ist zum Mittelpunkt hin gerichtet.



$$\sin(\frac{\Delta\varphi}{2}) = \frac{\Delta v/2}{v}$$

für kleine Winkel gilt $\sin \varphi \approx \varphi \implies$

$$\Delta v = v \Delta \varphi$$

außerdem ist $\Delta \vec{v}$ parallel zu \vec{e}_r also gilt

$$d\vec{v} = vd\varphi(-\vec{e}_r)$$

für die Zentripedalbeschleunigung gilt

$$\vec{a}_r = \frac{d\vec{v}}{dt} = \underbrace{v}_{r\omega} \frac{d\varphi}{dt} (-\vec{e}_r) = r\omega^2 (-\vec{e}_r)$$

Die Trägheitskraft (Zentrifugalkraft) wirkt der Zentripetalkraft entgegen.

Zentrifugalkraft: Looping Achterbahn

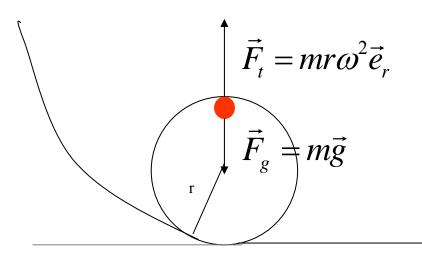
Der höchste Punkt ist kritisch. Dort muss gelten

$$F_t > F_g \implies \omega^2 r > g$$

Hängt nicht von der Masse ab!

Wie groß muss die Starthöhe sein?

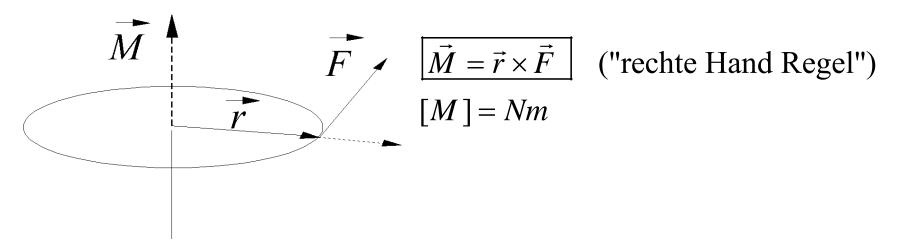
Umfrage!!!



Experiment: Starthöhe Looping

Drehmoment

In Analogie zur Kraft **F** bei der linearen Bewegung definieren wir für die Rotationsbewegung das Drehmoment **M**.

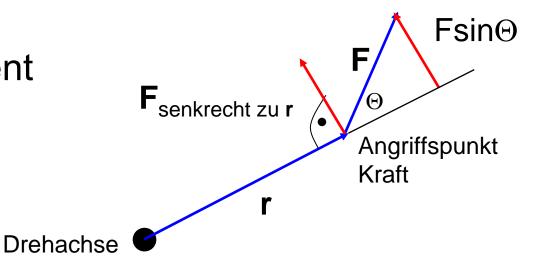


- Drehmoment ist Hebelarm x Kraft senkrecht zum Hebelarm!
- Kraftkomponente entlang des Hebelarms führt nicht zu einem Drehmoment

Analogie: Kraft (linear) ⇔ Drehmoment (Rotation)

Drehmoment

Drehmoment



Für **M** Kraft senkrecht zur Achse =

$$|\vec{M}| = |\vec{r}| |\vec{F}| \sin \Theta = |\vec{r} \times \vec{F}|$$

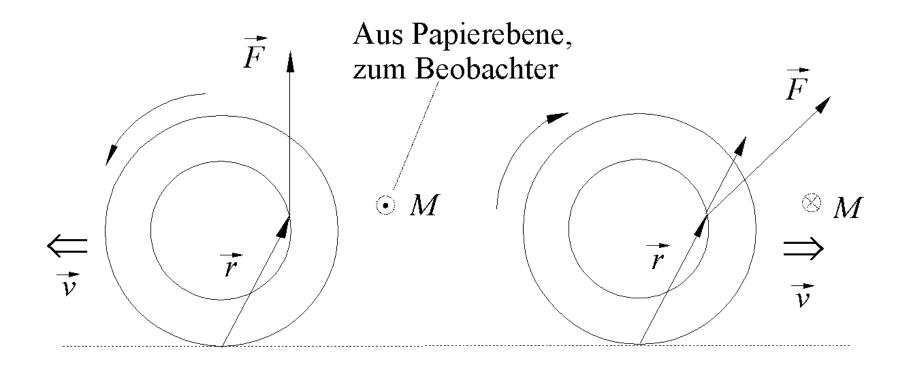
$$\vec{M} = \vec{r} \times \vec{F}$$

- Drehmoment \vec{M} erzeugt eine Winkelbeschleunigung $\dot{\vec{\omega}}$
- Richtung von $\dot{\vec{\omega}}$ durch "recht-Hand-Schraube"
- wenn $\vec{M} = 0$ dann auch $\dot{\vec{\omega}}$ (Analog zu $\vec{F} = 0 \iff \vec{a} = 0$ im linearen Fall)
- Beachte $\dot{\vec{\omega}}$ ist nicht die Zentripedalbeschleunigung

Analogie: Kraft (linear) ⇔ Drehmoment (Rotation)

Folgsame Rolle

Versuch: Folgsame Rolle



Dreharbeit

Drehmoment **M** verrichtet bei der Drehung um φ Dreharbeit!

$$dW = \vec{F}d\vec{r} = F_{\perp r}rd\varphi = Md\varphi = \vec{M}d\vec{\varphi}$$

$$W = \int dW = \int Md\varphi$$

Für ein konstantes Drehmoment (nicht konstante Kraft, da Kraft permanent die Richtung ändern muss, um senkrecht zum Hebelarm zu bleiben) ergibt sich

$$W = M \varphi$$

Dreharbeit führt zu einer Zunahme der Winkelgeschwindigkeit ω

Analogie: Fs (linear) \Leftrightarrow M ϕ (Rotation)

Drehimpuls

An Stelle des Impuls für die Linearbewegung tritt der Drehimpuls für die Rotationsbewegung.

$$\left| \vec{L} = \vec{r} \times \vec{p} = m\vec{r} \times \vec{v} \right|$$

für den Betrag gilt

$$|\vec{L}| = mrv = mr^2 \omega$$

- je größer m, desto größer L
- je größer ω, desto größer L
- L ~ r²!!!!

Drehimpulserhaltung

Der Drehimpuls ist eine Erhaltungsgröße!

Drehimpulserhaltung

Der Drehimpuls ist eine Erhaltungsgröße!

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 damit gilt $\vec{r} \times \vec{F} = +\vec{r} \times \frac{d\vec{p}}{dt}$

damit läßt sich \vec{M} schreiben als

$$\vec{M} = \vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{p}) = \frac{d\vec{L}}{dt}$$

letzte Umformung gilt, da $\frac{d\vec{r}}{dt} \times \vec{p} = 0$

da
$$\frac{d\vec{r}}{dt} \parallel \vec{p}$$
 für eine Drehbewegung

für
$$\vec{M} = 0$$
 ändert sich \vec{L} nicht da $\frac{d\vec{L}}{dt} = 0$

Drehimpulserhaltung

Ohne äußeres Drehmoment gilt für ein abgeschlossenes mechanisches System:

$$\sum_{i} \vec{L}_{i} = const.$$

Das Grundgesetz der Dynamik für Drehbewegungen lautet:

$$\sum_{i} \frac{\vec{L}_{i}}{dt} = \sum_{i} \vec{M}_{i}$$

Analogie: Impuls (linear) ⇔ Drehimpuls (Rotation)

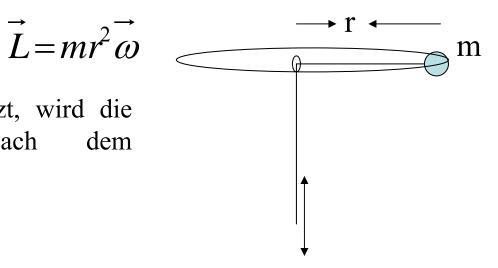
Experimente zur Drehimpulserhaltung

kreisende Kugel am Faden variabler Länge (Radius):

$$\vec{L} = mr^2 \vec{\omega}$$

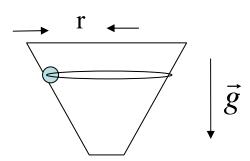
Wenn man den Radius verkürzt, wird die Umlauffrequenz höher. Nach dem Drehimpulserhaltungssatz gilt

$$\omega_1 / \omega_2 = (r_2/r_1)^2$$



Kugel in Trichter

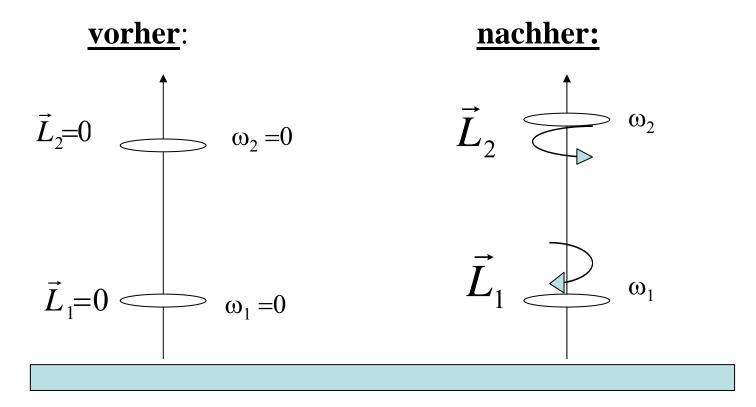
Genau wie oben wird die Umlauffrequenz der Kugel nach unten immer größer



Experimente zur Drehimpulserhaltung

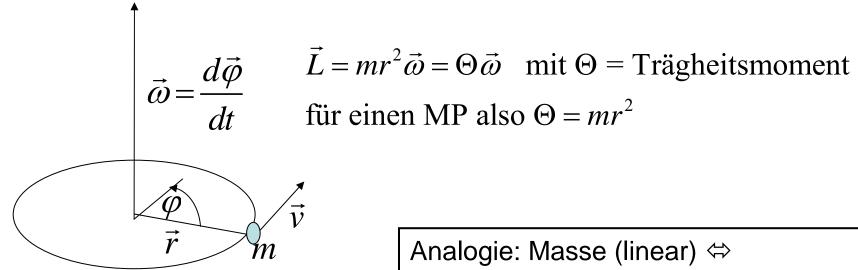
Drehstuhlexperiment

Das Schwungrad auf dem Drehstuhl und die Person auf dem Drehstuhl bilden ein geschlossenes mechanisches System, Drehstuhl und Rad drehen sich in entgegen gesetzter Richtung



Trägheitsmoment starrer Körper

Bis jetzt nur rotierenden Massepunkt betrachtet

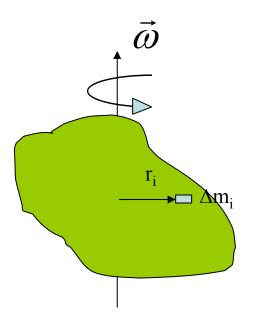


Analogie: Masse (linear) ⇔ Trägheitsmoment (Rotation)

Wie sieht es für einen ausgedehnten Köper aus?

Trägheitsmoment starrer Körper

Wir zerlegen den Körper in viele kleinen Massen ∆m_i und verallgemeinern dann:



$$\Theta = \sum_{i} \Delta m_{i} r_{i}^{2}$$

Hier ist r_i immer der Abstand <u>senkrecht</u> zur Drehachse. Beim Übergang zu infinitesimalen Massen dm erhält man wieder ein Volumenintegral:

$$\Theta = \sum_{i} \Delta m_i r_i^2 = \int_{V} r^2 dm = \rho \int_{V} r^2 dV$$

Analogie: Masse (linear) ⇔ Trägheitsmoment (Rotation)

Trägheitsmoment starrer Körper

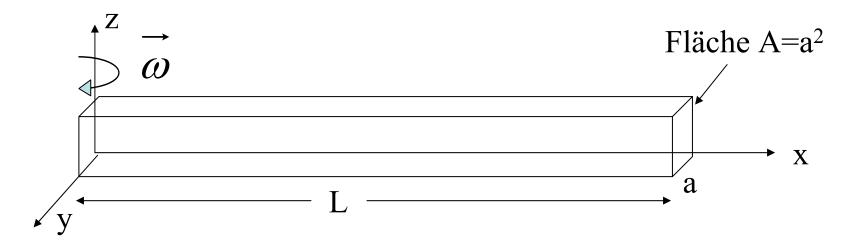
Drehstuhl-Experiment mit Hanteln

- Es gilt Drehimpulserhaltung => Trägheitsmoment kleiner ⇔ ω größer
- Die äußeren Massen tragen relativ viel zum Trägheitsmoment bei, die Massen nahe der Drehachse fast nichts!
- Bei Heranziehen der Arme wird Arbeit gegen die Zentrifugalkraft geleistet.

Beispiele für 0

Für einfache Geometrien kann man das Integral leicht auswerten:

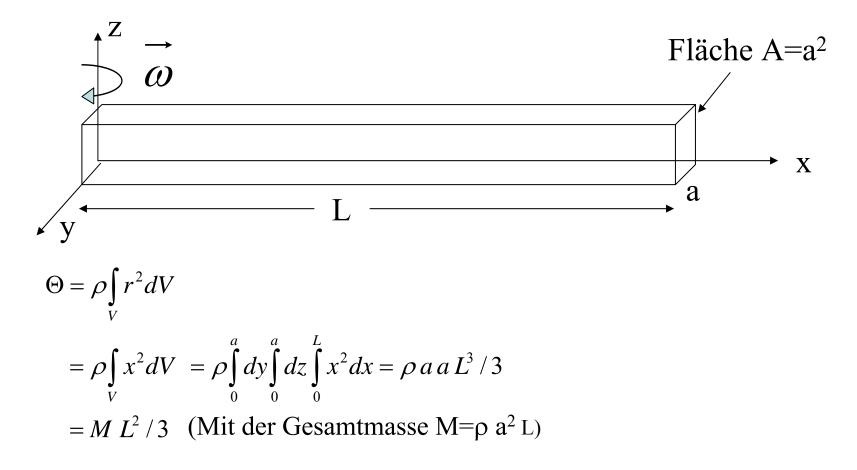
1.Beispiel: dünner Stab, Fläche A=a², Länge L>>a, gedreht um ein Ende



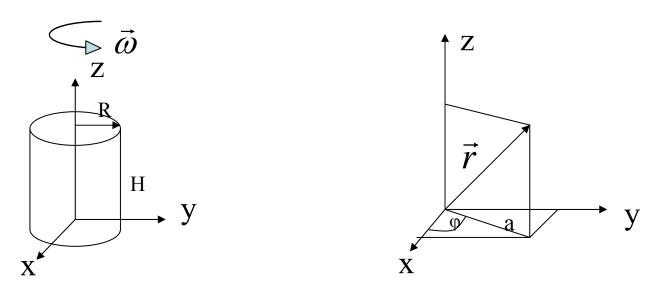
Beispiele für θ

Für einfache Geometrien kann man das Integral leicht auswerten:

1.Beispiel: dünner Stab, Fläche A=a², Länge L>>a, gedreht um ein Ende



2. Beispiel: Rotation Walze (Höhe H; Radius R) um Symmetrieachse Z:

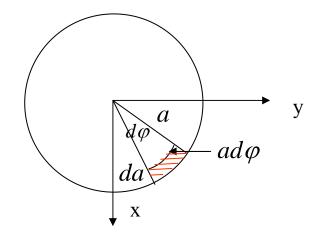


Die kartesischen Koordinaten sind für dieses Problem nicht gut angepasst, wir gehen deshalb zu Zylinderkoordinaten über (siehe Diagramm).

kartesische Koordinaten Zylinderkoordinaten :
$$(x,y,z)$$
 (a,ϕ,z)

Umrechnung: $x = a \cos(\phi)$; $y = a \sin(\phi)$

Das <u>Volumenelement</u> in den Volumenintegralen dV muss ebenfalls noch in den Zylinderkoordinaten geschrieben werden:



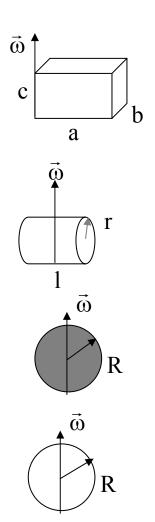
Das rot gestrichelte Flächenelement in der x-y-Ebene hat die Fläche **dA=a dφ da.** Wenn man φ von 0 bis 360° variiert und a von 0 bis R, überdecken die Flächenelemente dA die Zylinder-Basisfläche

Wir können jetzt das Volumenintegral in Zylinderkoordinaten ausdrücken:

$$\begin{split} \Theta &= \rho \int_{V} a^2 dV = \rho \int_{V} a^2 a \, d\phi \, da \, dz = \rho \int_{0}^{R} a^3 da \int_{0}^{2\pi} d\phi \int_{0}^{H} dz \\ &= \rho \frac{R^4}{4} \, 2\pi \, H \\ \text{also gilt } \boxed{\Theta_{Zylinder} \, = R^2 M/2} \quad \text{(mit } \rho \pi R^2 H = M \text{ (Gesamtmasse))} \end{split}$$

Beispiel: Mensch als Vollzylinder angenähert, um zentrale "Längsachse" rotiert mit M = 64 kg und R = 0.25 m ergibt "nur" $\Theta = 2 \text{ kgm}^2$!

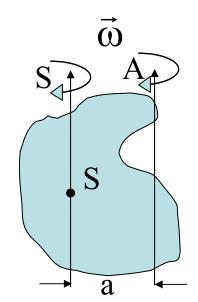
Andere Beispiele für Trägheitsmomente



Quader (a,b,c)	$Q=1/12M(a^2+b^2)$
Drehachse parallel	
zur c-Kante	
Vollzylinder	$Q=1/12M(3r^2+l^2)$
Drehachse	
senkrecht zur	
Zylinderachse	
Vollkugel	Q=2/5MR ²
Drehachse durch	
Mittelpunkt	
Hohlkugel	Q=2/3MR ²
Drehachse durch	
Mittelpunkt	

Steinerscher Satz

Das Trägheitsmoment einer Massenverteilung hängt natürlich von der Lage der Drehachse ab. Wenn die Achse durch den Schwerpunkt geht (ausgezeichnete Achse mit Trägheitsmoment Θ_S), ist das Trägheitsmoment am kleinsten. Wir betrachten nun eine parallele Achse A im Abstand a :



Es gilt für das Trägheitsmoment bei Drehung um die Achse A und um die Achse S (M ist Gesamtmasse)

$$\Theta_{\rm A} = \Theta_{\rm S} + Ma^2$$

Zur Anschauung: Der Satz gilt offensichtlich für a = 0 (keine Achsverschiebung) und für $\Theta_S = 0$ (Punktmasse M im Abstand a).

Hauptträgheitsachsen

- Trägheitsmoment hängt von Drehachse ab
- bei Körpern mit homogener Masseverteilung gibt es immer eine Achse durch den Schwerpunkt mit minimalem und eine Achse mit maximalem Trägheitsmoment (Hauptträgheitsachsen)
- nur um diese Achsen stabile Rotation. Sonst Unwucht!

Experimente: Hauptträgheitsachsen eines Quaders, Stabilität der Rotation

Winkelgeschwindigkeit

- Analogie ω ⇔ v
- gibt an, wie viel Radiant pro Sekunde überstrichen werden
- Orientiert entlang der Drehachse, "rechte-Hand-Schraube"

Umlaufzeit, Frequenz

- Zeit für eine Umdrehung = Umlaufzeit T, [T] = s
- Umdrehungen pro Zeiteinheit = Frequenz f, [f] = s⁻¹ = Hz
- $f = 1/T = \omega/2\pi$

Umlaufgeschwindigkeit

- Momentangeschwindigkeit v eines Masseelementes auf seiner Umlaufbahn
- $-\mathbf{v} = \mathbf{\omega} \times \mathbf{r}$

Zentripetal- / Zetrifugalkraft

$$-a_7 = \omega^2 r$$

- Drehmoment
 - $-M=r\times F$
 - Analogie : M ⇔ F
- Dreharbeit

$$W = \int dW = \int Md\varphi$$

- Analogie: dW = Fds ⇔ Mdφ , da F ⇔ M und s ⇔ φ

Drehimpuls

$$\vec{L} = \vec{r} \times \vec{p}$$

- Analogie: L = p
- Drehimpulserhaltung

$$\sum_{i} \vec{L}_{i} = const$$

Grundgesetz der Dynamik für Drehbewegungen

$$\sum_{i} \frac{d\vec{L}_{i}}{dt} = \sum_{i} \vec{M}_{i}$$

Trägheitsmoment starrer Körper

$$\Theta = \sum_{i} \Delta m_i r_i^2 = \int_{V} r^2 dm = \rho \int_{V} r^2 dV$$

- Analogie: θ ⇔ m

Steinerscher Satz

$$\Theta_{A} = \Theta_{S} + Ma^{2}$$

- $\theta_{\rm S}$ = Trägheitsmoment bei Achse durch Schwerpunkt, $\theta_{\rm A}$ = Trägheitsmoment bei paralleler Achse im Abstand a
- Hauptträgheitsachsen