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Abstract

We study a ferromagnetic Ising model on random graphs with a power-law degree distribution and
compute the thermodynamic limit of the pressure when the mean degree is finite (degree exponent
τ > 2), for which the random graph has a tree-like structure. For this, we closely follow the analysis by
Dembo and Montanari in [7] which assumes finite variance degrees (τ > 3), adapting it when necessary
and also simplifying it when possible. Our results also apply in cases where the degree distribution
does not obey a power law.

We further identify the thermodynamic limits of various physical quantities, such as the magneti-
zation and the internal energy.

1 Introduction and results

In this article we study the behavior of the Ising model on complex networks. There are many real-
world examples of complex networks. In [18], Newman divided such networks into four categories: social,
information, technological and biological networks. There has been much interest in the functionality of
such networks in recent years [1, 18, 22]. The Ising model is a paradigm model in statistical physics for
cooperative behavior [19, 20].

De Sanctis and Guerra studied this model on Erdős-Rényi random graphs in the high and zero tem-
perature regime [21]. In [7], Dembo and Montanari study a ferromagnetic Ising model on locally tree-like
graphs, where they assume that the degree distribution of the graph has finite variance. The Ising model
on the k-regular graph where there is no external magnetic field is studied in more detail in [17]. In
this paper, the Gibbs measures are studied and it is proved that they converge to a symmetric linear
combination of the plus and the minus Gibbs measure, while other Gibbs measures (of which there are
uncountably many) are not seen.

Many real-life networks are reported to have an infinite variance degree distribution (see e.g. [18])
and, therefore, it is interesting to generalize the analysis of the Ising model on random graphs to this
setting. In this article we shall extend and simplify the analysis in [7] to the case where the variances
of the degrees are infinite, but their means remain finite. In particular, we shall prove that the explicit
expression for the pressure found in [7] remains valid in the case of infinite variance degrees.

This research fits into a general effort to study the relation of the topology of networks and the
behavior of processes on them. An overview of results by physicists can for example be found in [10].
Also mathematically rigorous results for processes on power-law random graphs were published recently,
for example for the contact process [6] and first passage percolation [4].
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In this section we will first define the model and then state our main results. Furthermore we will
discuss these results and give an overview of the proof. The remainder of the proof can be found in the
subsequent sections.

1.1 Model definition

We start by defining Ising models on finite graphs. Consider a random graph sequence {Gn}n≥1, where
Gn = (Vn, En), with vertex set Vn = [n] ≡ {1, . . . , n} and some random edge set En. To each vertex
i ∈ [n] we assign an Ising spin σi = ±1. A configuration of spins is denoted by σ = {σi : i ∈ [n]}. The
Ising model on Gn is then defined by the Boltzmann distribution

µn(σ) =
1

Zn(β,B)
exp

β ∑
(i,j)∈En

σiσj +
∑
i∈[n]

Biσi

 . (1.1)

Here, β ≥ 0 is the inverse temperature and B = {Bi : i ∈ [n]} ∈ Rn is the vector of external magnetic
fields. We will write B instead of B for a uniform external field, i.e., Bi = B for all i ∈ [n]. The partition
function Zn(β,B) is the normalization factor:

Zn(β,B) =
∑

σ∈{−1,+1}n
exp

β ∑
(i,j)∈En

σiσj +
∑
i∈[n]

Biσi

 . (1.2)

We let
〈
·
〉
µ

denote the expectation with respect to the Ising measure µ, i.e., for every bounded function
f : {−1,+1}n → R, 〈

f(σ)
〉
µn

=
∑

σ∈{−1,+1}n
f(σ)µn(σ). (1.3)

The main quantity we shall study is the pressure per particle, which is defined as

ψn(β,B) =
1
n

logZn(β,B), (1.4)

in the thermodynamic limit of n→∞.
We shall assume that the graph sequence {Gn}n≥1 is locally like a homogeneous random tree, uniformly

sparse and has a degree distribution with strongly finite mean. We make these assumptions precise below,
but we shall first introduce some notation.

For a probability distribution over the non-negative integers P = {Pk : k ≥ 0} we define its size-biased
law ρ = {ρk : k ≥ 0} by

ρk =
(k + 1)Pk+1

P
, (1.5)

where P =
∑
k≥0 kPk is the expected value of P . Similarly, we write ρ =

∑
k≥0 kρk for the expected

value of ρ. The random rooted tree T (P, ρ, `) is a branching process with ` generations, where the root
offspring has distribution P and the vertices in each next generation have offsprings that are independent
and identically distributed (i.i.d.) with distribution ρ. We write P for the law of T (P, ρ,∞) and write
T (ρ, `) when the offspring at the root also has distribution ρ.

We write that an event A holds almost surely (a.s.) if P[A] = 1. The ball of radius r around vertex i,
Bi(r), is defined as the graph induced by the vertices at graph distance at most r from vertex i. For two
rooted trees T1 and T2, we write that T1 ' T2, when there exists a bijective map from the vertices of T1
to those of T2 that preserves the adjacency relations.
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Definition 1.1 (Local convergence to homogeneous trees). Let Pn denote the law induced on the ball
Bi(t) in Gn centered at a uniformly chosen vertex i ∈ [n]. We say that the graph sequence {Gn}n≥1 is
locally tree-like with asymptotic degree distribution P when, for any rooted tree T with t generations, we
have that, a.s.,

lim
n→∞

Pn[Bi(t) ' T ] = P[T (P, ρ, t) ' T ]. (1.6)

Note that this implies that the degree of a uniformly chosen vertex of the graph has asymptotic law
P . In [7], it is assumed that the asymptotic degree distribution P has finite variance. This is not a
necessary condition and we shall prove that it is sufficient to assume that the degree distribution has a
finite (1 + ε)-th moment for some ε > 0:

Definition 1.2 (Strongly finite mean degree distribution). We say that the degree distribution P has
strongly finite mean when there exist constants τ > 2 and c > 0 such that

∞∑
i=k

Pi ≤ ck−(τ−1). (1.7)

For technical reasons, we will assume, without loss of generality, that τ ∈ (2, 3) in the rest of the
paper. Note that all distributions P where

∞∑
i=k

Pi = ck−(τ−1)L(k), (1.8)

for c > 0, τ > 2 and some slowly varying function L(k), have strongly finite mean, because by Potter’s
theorem ([11, Lemma 2, p.277]) any slowly varying function L(k) can be bounded above and below by an
arbitrary small power of k. Also distributions which have a lighter tail than a power law, e.g. the Poisson
distribution, have strongly finite mean.

Definition 1.3 (Uniform sparsity). We say that the graph sequence {Gn}n≥1 is uniformly sparse when,
a.s.,

lim
`→∞

lim sup
n→∞

1
n

∑
i∈[n]

Di1{Di≥`} = 0, (1.9)

where Di is the degree of vertex i in Gn and 1A denotes the indicator of the event A.

An immediate consequence of the local convergence and the uniform sparsity condition is, that, a.s.,

lim
n→∞

|En|
n

= lim
n→∞

1
2n

∑
i∈[n]

∞∑
k=1

k1{Di=k} =
1
2

lim
`→∞

lim
n→∞

`−1∑
k=1

k

∑
i∈[n] 1{Di=k}

n
+

1
n

∑
i∈[n]

Di1{Di≥`}


=

1
2

lim
`→∞

`−1∑
k=1

kPk = P/2 <∞. (1.10)

1.2 Main results

We first investigate the thermodynamic limit of the pressure:

Theorem 1.4 (Thermodynamic limit of the pressure). Assume that the random graph sequence {Gn}n≥1

is locally tree-like with asymptotic degree distribution P , where P has strongly finite mean, and is uniformly
sparse. Then, for all 0 ≤ β <∞ and all B ∈ R, the thermodynamic limit of the pressure exists, a.s., and
equals

lim
n→∞

ψn(β,B) = ϕ(β,B), (1.11)

3



where, for B < 0, ϕ(β,B) = ϕ(β,−B), ϕ(β, 0) = limB↓0 ϕ(β,B) and, for B > 0,

ϕ(β,B) =
P

2
log cosh(β)− P

2
E[log(1 + tanh(β) tanh(h1) tanh(h2))]

+ E
[
log

(
eB

L∏
i=1

{1 + tanh(β) tanh(hi)}+ e−B
L∏
i=1

{1− tanh(β) tanh(hi)}
)]

, (1.12)

where

(i) L has distribution P ;

(ii) {hi}i≥1 are i.i.d. copies of the fixed point h∗ = h∗(β,B) of the distributional recursion

h(t+1) d= B +
Kt∑
i=1

atanh(tanh(β) tanh(h(t)
i )), (1.13)

where h(0) ≡ B, {Kt}t≥1, are i.i.d. with distribution ρ and {h(t)
i }i≥1 are i.i.d. copies of h(t) inde-

pendent of Kt;

(iii) L and {hi}i≥1 are independent.

The quantity ϕ(β,B) can be seen as the infinite volume pressure of the Ising model on the random
Bethe lattice, where every vertex has degree distributed as P (cf. [3] where the Ising model on the regular
Bethe lattice is studied).

Various thermodynamic quantities can be computed by taking the proper derivative of the function
ϕ(β,B) as we shall show in the next theorem.

Theorem 1.5 (Thermodynamic quantities). Assume that the random graph sequence {Gn}n≥1 is locally
tree-like with asymptotic degree distribution P , where P has strongly finite mean, and is uniformly sparse.
Then, for all β ≥ 0 and B 6= 0, each of the following statements holds a.s.:

(a) Magnetization. Let Mn(β,B) = 1
n

∑
i∈[n] 〈σi〉µn

be the magnetization per vertex. Then, its thermo-
dynamic limit exists and is given by

M(β,B) ≡ lim
n→∞

Mn(β,B) =
∂

∂B
ϕ(β,B). (1.14)

(b) Internal energy. Let Un(β,B) = − 1
n

∑
(i,j)∈En

〈σiσj〉µn
be the internal energy per vertex. Then, its

thermodynamic limit exists and is given by

U(β,B) ≡ lim
n→∞

Un(β,B) = − ∂

∂β
ϕ(β,B). (1.15)

(c) Susceptibility. Let χn(β,B) = 1
n

∑
i,j∈[n]

(
〈σiσj〉µn

− 〈σi〉µn
〈σj〉µn

)
= ∂Mn

∂B (β,B) be the suscepti-
bility. Then, its thermodynamic limit exists and is given by

χ(β,B) ≡ lim
n→∞

χn(β,B) =
∂2

∂B2
ϕ(β,B). (1.16)
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The limits above hold for β ≥ 0 and B 6= 0. From the physics literature (see e.g. [9]) we expect
that this model has a ferromagnetic phase transition at βc = atanh(1/ρ), i.e., the susceptibility becomes
infinite at β = βc in B = 0. For β < βc the functions above are continuous in B for all B and thus the
limits above also hold in this regime.

Another physical quantity studied in the physics literature is the specific heat,

Cn(β,B) ≡ −β2∂Un
∂β

. (1.17)

Unfortunately, we were not able to prove that this converges to β2 ∂2

∂β2ϕ(β,B), because we do not have
convexity or concavity of the internal energy in β. We expect, however, that this limit also holds.

Taking the derivatives of Theorem 1.5 we can also give explicit expressions for the magnetization and
internal energy which have a physical interpretation:

Corollary 1.6 (Explicit expressions for thermodynamic quantities). Assume that the graph sequence
{Gn}n≥1 is locally tree-like with asymptotic degree distribution P , where P has strongly finite mean, and
is uniformly sparse. Then, for all β ≥ 0 and B ∈ R, each of the following statements holds a.s.:

(a) Magnetization. Let νL+1 be the random Ising measure on a tree with L+ 1 vertices (one root and
L leaves), where L has distribution P , defined by

νL+1(σ) =
1

ZL+1(β, h∗)
exp

{
β

L∑
i=1

σ0σi +Bσ0 +
L∑
i=1

hiσi

}
, (1.18)

where {hi}i≥1 are i.i.d. copies of h∗, independent of L. Then, the thermodynamic limit of the
magnetization per vertex is given by

M(β,B) = E
[〈
σ0
〉
νL+1

]
, (1.19)

where the expectation is taken over L and {hi}i≥1. More explicitly,

M(β,B) = E
[
tanh

(
B +

L∑
i=1

atanh(tanh(β) tanh(hi))

)]
. (1.20)

(b) Internal energy. Let ν ′2 be the random Ising measure on one edge, defined by

ν ′2(σ) =
1

Z2(β, h1, h2)
exp {βσ1σ2 + h1σ1 + h2σ2} , (1.21)

where h1 and h2 are i.i.d. copies of h∗. Then the thermodynamic limit of the internal energy per
vertex is given by

U(β,B) = −P
2

E
[〈
σ1σ2

〉
ν′2

]
, (1.22)

where the expectation is taken over h1 and h2. More explicitly,

U(β,B) = −P
2

E
[

tanh(β) + tanh(h1) tanh(h2)
1 + tanh(β) tanh(h1) tanh(h2)

]
. (1.23)

Note that the magnetization and internal energy are local observables, i.e., they are spin or edge
variables averaged out over the graph. This is not true for the susceptibility, which is an average over
pairs of spins, and hence we were not able to give an explicit expression for this quantity.
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1.3 Discussion

We study the Ising model on a random graph, which gives rise to a model with double randomness. Still,
in the thermodynamic limit, the pressure is essentially deterministic. This is possible, because it suffices
to study the Ising model on the local neighborhood of a uniformly chosen vertex. This local neighborhood
converges by our assumptions to the tree T (P, ρ,∞), and it thus suffices to study the Ising model on this
limiting object. An analysis of this kind is therefore known as the objective method introduced by Aldous
and Steele in [2].

The assumption that the graph converges locally to a homogeneous tree holds in a wide range of
random graph models, among which the configuration model and the Erdős-Rényi random graph, as we
now explain.

In the configuration model, a random graph Gn is constructed as follows. Let {Di}ni=1 be a sequence
of i.i.d. random variables with a certain degree distribution P . Let vertex i ∈ [n] be a vertex with Di

half-edges, also called stubs, attached to it, i.e., vertex i has degree Di. Let Ln =
∑n
i=1Di be the total

degree, which we assume to be even in order to be able to construct a graph. When Ln is odd we will
increase the degree of Dn by 1. For n large, this will hardly change the results and we will therefore
ignore this effect. Now connect one of the half-edges uniformly at random to one of the remaining Ln− 1
half-edges. Repeat this procedure until all half-edges have been connected.

Dembo and Montanari studied a slightly different version of the configuration model in [8], where
the degrees of the vertices are deterministic instead of random. They prove that in that case, when the
empirical degree distribution has finite mean, the graph sequence is also locally tree-like and uniformly
sparse. Their proof can easily be adapted to show that this also holds for the above version of the
configuration model using the strong law of large numbers.

In [8], it was also shown that the Erdős-Rényi random graph is uniformly sparse and is locally tree-like
with an asymptotic degree distribution that is Poisson distributed (and note that for a Poisson distribution
P = ρ). Therefore, clearly, the Erdős-Rényi random graph has a finite mean degree distribution.

That these results hold for a wide variety of random graph models is not a surprise. It is believed that
the behavior of networks shows a great universality. Distances in random graph models, for example, also
show a remarkably universal behavior. See, e.g., [14] for an overview of results on distances in power-law
random graphs. These distances mainly depend on the power-law exponent and not on other details of the
graph. Note, however, that the results above only apply to graphs that converge locally to a homogeneous
tree and thus, for instance, not for many inhomogeneous random graphs studied in [5] where the local
structure is a multi-type Galton-Watson branching process instead. Certain parts of our proof easily
extend to this case.

In this paper we study smooth observables, we defer the investigation of the critical nature to a later
paper. There we will study the behavior around the critical value βc where certain quantities (e.g. the
susceptibility) have singularities. Of special interest is the critical behavior when τ ∈ (2, 3), where βc = 0,
i.e., where the system is always in the ferromagnetic regime for any finite temperature.

1.4 Overview of the proof and organization of the paper

In this section, we give an overview of the proof of Theorem 1.4, and reduce it to the proofs of Propo-
sitions 1.7, 1.8 and 1.9 below. Proposition 1.7 establishes that the recursive relation that gives the field
acting on the root of the infinite tree T (P, ρ,∞) is well-defined, in the sense that the recursion admits a
unique fixed point h∗. Proposition 1.8 is instrumental to control the implicit dependence of the pressure
of the random Bethe lattice ϕ(β,B) on the inverse temperature β via the field h∗. This is used in Propo-
sition 1.9 which proves that the derivative of the pressure with respect to β, namely minus the internal
energy, converges in the thermodynamic limit to the derivative of ϕ(β,B). We also clearly indicate how
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our proof deviates from that by Dembo and Montanari in [7].
We will first analyze the case where B > 0 and deal with B ≤ 0 later. We start by investigating the

distributional recursion (1.13):

Proposition 1.7 (Tree recursion). Let B > 0 and let {Kt}t≥1 be i.i.d. according to some distribution ρ
and assume that K1 <∞, a.s.. Consider the sequence of random variables {h(t)}t≥0 defined by h(0) ≡ B
and, for t ≥ 0, by (1.13). Then, the distributions of h(t) are stochastically monotone and h(t) converges
in distribution to the unique fixed point h∗ of the recursion (1.13) that is supported on [0,∞).

We can now investigate the thermodynamic limit of the pressure. By the fundamental theorem of
calculus,

lim
n→∞

ψn(β,B) = lim
n→∞

[
ψn(0, B) +

∫ β

0

∂

∂β′
ψn(β′, B)dβ′

]

= lim
n→∞

[
ψn(0, B) +

∫ ε

0

∂

∂β′
ψn(β′, B)dβ′ +

∫ β

ε

∂

∂β′
ψn(β′, B)dβ′

]
, (1.24)

for any 0 < ε < β. For all n ≥ 1, we have that

ψn(0, B) = log(2 cosh(B)) = ϕ(0, B), (1.25)

so this is also true for n→∞.
By the uniform sparsity of {Gn}n≥1,

∣∣∣∣ ∂∂βψn(β,B)
∣∣∣∣ =

∣∣∣∣∣∣ 1n
∑

(i,j)∈En

〈
σiσj

〉
µn

∣∣∣∣∣∣ ≤ |En|n ≤ c, (1.26)

for some constant c. Thus, uniformly in n,∣∣∣∣∫ ε

0

∂

∂β′
ψn(β′, B)dβ′

∣∣∣∣ ≤ cε. (1.27)

Using the boundedness of the derivative for β′ ∈ [ε, β], we also have that

lim
n→∞

∫ β

ε

∂

∂β′
ψn(β′, B)dβ′ =

∫ β

ε
lim
n→∞

∂

∂β′
ψn(β′, B)dβ′. (1.28)

For β > 0, we will show that the partial derivative with respect to β of ψn(β,B) converges to the partial
derivative with respect to β of ϕ(β,B). For this, we need that we can in fact ignore the dependence of
h∗ on β when computing the latter derivative as we shall show first:

Proposition 1.8 (Dependence of ϕ on (β,B) via h∗). Assume that the distribution P has strongly finite
mean. Fix B1, B2 > 0 and 0 < β1, β2 < ∞. Let h∗1 and h∗2 be the fixed points of (1.13) for (β1, B1) and
(β2, B2), respectively. Let ϕh∗(β,B) be defined as in (1.12) with {hi}i≥1 replaced by i.i.d. copies of the
specified h∗. Then,

(a) For B1 = B2, there exists a λ1 <∞ such that

|ϕh∗1(β1, B1)− ϕh∗2(β1, B1)| ≤ λ1|β1 − β2|τ−1. (1.29)
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(b) For β1 = β2, there exists a λ2 <∞ such that

|ϕh∗1(β1, B1)− ϕh∗2(β1, B1)| ≤ λ2|B1 −B2|τ−1. (1.30)

Note that this proposition only holds if τ ∈ (2, 3). For τ > 3, the exponent τ − 1 can be improved
to 2, as is shown in [7], but this is not of importance to the proof. We need part (b) of the proposition
above later in the proof of Corollary 1.6.

Proposition 1.9 (Convergence of the internal energy). Assume that the graph sequence {Gn}n≥1 is
locally tree-like with asymptotic degree distribution P , where P has strongly finite mean, and is uniformly
sparse. Let β > 0. Then, a.s.,

lim
n→∞

∂

∂β
ψn(β,B) =

∂

∂β
ϕ(β,B), (1.31)

where ϕ(β,B) is given in (1.12).

By Proposition 1.9 and bounded convergence,∫ β

ε
lim
n→∞

∂

∂β′
ψn(β′, B)dβ′ =

∫ β

ε

∂

∂β′
ϕ(β′, B)dβ′ = ϕ(β,B)− ϕ(ε,B), (1.32)

again by the fundamental theorem of calculus.
Observing that 0 ≤ tanh(h∗) ≤ 1, one can show that, by dominated convergence, ϕ(β,B) is right-

continuous in β = 0. Thus, letting ε ↓ 0,

lim
n→∞

ψn(β,B) = lim
ε↓0

lim
n→∞

[
ψn(0, B) +

∫ ε

0

∂

∂β′
ψn(β′, B)dβ′ +

∫ β

ε

∂

∂β′
ψn(β′, B)dβ′

]
= ϕ(0, B) + lim

ε↓0
(ϕ(β,B)− ϕ(ε,B)) = ϕ(β,B), (1.33)

which completes the proof for B > 0.
The Ising model with B < 0 is equivalent to the case B > 0, because one can multiply all spin variables

{σi}i∈[n] and B with −1 without changing Boltzmann distribution (1.1). Furthermore, note that,

∣∣∣∣ ∂∂Bψn(β,B)
∣∣∣∣ =

∣∣∣∣∣∣ 1n
∑
i∈[n]

〈σi〉µn

∣∣∣∣∣∣ ≤ 1, (1.34)

so that B 7→ ψn(β,B) is uniformly Lipschitz continuous with Lipschitz constant one. Therefore,

lim
n→∞

ψn(β, 0) = lim
n→∞

lim
B↓0

ψn(β,B) = lim
B↓0

lim
n→∞

ψn(β,B) = lim
B↓0

ϕ(β,B). (1.35)

The proof given above follows the line of argument in [7], but in order to prove Propositions 1.7, 1.8
and 1.9 we have to make substantial changes to generalize the proof to the infinite variance case.

To prove Proposition 1.7, we adapt the proof of Dembo and Montanari by taking the actual forward
degrees into account, instead of using Jensen’s inequality to replace them by expected forward degrees,
which are potentially infinite. This also makes a separate analysis of nodes that have zero offspring
superfluous, which considerably simplifies the analysis.

The proof of Proposition 1.8(a) is somewhat more elaborate, because we have to distinguish between
the cases where L in (1.12) is small or large, but the techniques used remain similar. By, again, taking
into account the actual degrees more precisely, the analysis is simplified however: we, for example, do not
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rely on the exponential decay of the correlations. Part (b) of this proposition is new and can be proved
with similar techniques. The proof of Proposition 1.9 is proven in a similar way as in [7].

The remainder of this paper is organized as follows. First we shall review some preliminaries on
Ising models in Section 2. Next, we shall study the tree recursion of (1.13) and prove Proposition 1.7 in
Section 3 and Proposition 1.8. Finally, in Section 5, we shall prove Proposition 1.9. In Section 6 we shall
study the thermodynamic quantities to prove Corollary 1.6.

2 Preliminaries

The first result on ferromagnetic Ising models we will heavily rely on is the Griffiths, Kelly, Sherman
(GKS) inequality, which gives various monotonicity properties:

Lemma 2.1 (GKS inequality). Consider two Ising measures µ and µ′ on graphs G = (V,E) and G′ =
(V,E′), with inverse temperatures β and β′ and external fields B and B′, respectively. If E ⊆ E′, β ≤ β′
and 0 ≤ Bi ≤ B′i for all i ∈ V , then, for any U ⊆ V ,

0 ≤
〈 ∏
i∈U

σi
〉
µ
≤
〈 ∏
i∈U

σi
〉
µ′
. (2.1)

A weaker version of this inequality was first proved by Griffiths [12] and later generalized by Kelly and
Sherman [15]. The second result on ferromagnetic Ising models is an inequality by Griffiths, Hurst and
Sherman [13] which shows the concavity of the magnetization in the external (positive) magnetic fields.

Lemma 2.2 (GHS inequality). Let β ≥ 0 and Bi ≥ 0 for all i ∈ V . Denote by

mj(B) = µ({σ : σj = +1})− µ({σ : σj = −1}) (2.2)

the magnetization of vertex j when the external fields at the vertices are B. Then, for any three vertices
j, k, l ∈ V ,

∂2

∂Bk∂B`
mj(B) ≤ 0. (2.3)

The final preliminary observation we need is a lemma that reduces the computation of the Ising
measure on a tree to the computation of Ising measures on subtrees:

Lemma 2.3 (Pruning trees). For U a subtree of a finite tree T , let ∂U be the subset of vertices of U that
connect to a vertex in W ≡ T \ U . Denote by 〈σu〉µW,u

the magnetization of vertex u ∈ ∂U of the Ising
model on W ∪ {u}. Then, the marginal Ising measure on U , µTU , is the same as the Ising measure on U
with magnetic fields

B′u =

{
atanh(〈σu〉µW,u

), u ∈ ∂U,
Bu, u ∈ U \ ∂U.

(2.4)

The proof of this lemma follows from a direct application of the Boltzmann distribution given in (1.1),
see [7, Lemma 4.1].

3 Tree recursion: proof of Proposition 1.7

To prove Proposition 1.7, we will first study the Ising model on a tree with ` generations, T (`), with
either + or free boundary conditions, where the Ising models on the tree T (`) with +/free boundary

9



conditions are defined by the Boltzmann distributions

µ`,+(σ) =
1

Z`,+(β,B)
exp

β ∑
(i,j)∈T (`)

σiσj +
∑
i∈T (`)

Biσi

1{σi=+1, for all i∈∂T (`)}, (3.1)

and

µ`,f (σ) =
1

Z`,f (β,B)
exp

β ∑
(i,j)∈T (`)

σiσj +
∑
i∈T (`)

Biσi

 , (3.2)

respectively, where Z`,+/f are the proper normalization factors and ∂T (`) denotes the vertices in the
`-th generation of T (`). In the next lemma we will show that the effect of these boundary conditions
vanishes when `→∞. This lemma is a generalization of [7, Lemma 4.3], where this result was proved in
expectation for graphs with a finite-variance degree distribution. This generalization is possible by taking
the degrees into account more precisely, instead of using Jensen’s inequality to replace them by average
degrees. This also simplifies the proof.

We will then show that the recursion (1.13) has a fixed point and use a coupling with the root
magnetization in trees and Lemma 3.1 to show that this fixed point does not depend on the initial
distribution h(0), thus showing that (1.13) has a unique fixed point.

Lemma 3.1 (Vanishing effect of boundary conditions). Let m`,+/f (B) denote the root magnetization
given T (`) with external field per vertex Bi ≥ Bmin > 0 when the tree has +/free boundary conditions.
Assume that the forward degrees satisfy ∆i <∞ a.s., for all i ∈ T (`− 1). Let 0 ≤ β ≤ βmax <∞. Then,
there exists an M = M(βmax, Bmin) <∞ such that, a.s.,

m`,+(B)−m`,f (B) ≤ M

`
, (3.3)

for all ` ≥ 1.

Remark. Lemma 3.1 is extremely general. For example, it also applies to trees arising from multitype
branching processes.

Proof. The lemma clearly holds for β = 0, so we assume that β > 0 in the remainder of the proof.
Denote by m`(B,H) the root magnetization given T (`) with free boundary conditions, when the

external field on the vertices i ∈ ∂T (`) is Bi +Hi and Bi on all other vertices i ∈ T (`− 1). Condition on
the tree T (`) and assume that the tree T (`) is finite, which is true a.s., so that we can use Lemma 2.3.
Thus, for 1 ≤ k ≤ `,

mk,+(B) ≡ mk(B,∞) = mk−1(B, {β∆i}), (3.4)

where ∆i is the forward degree of vertex i ∈ ∂T (k − 1). By the GKS inequality

mk−1(B, {β∆i}) ≤ mk−1(B,∞). (3.5)

Since the magnetic field at all vertices in ∂T (k) is at least Bmin we can write, using Lemma 2.3 and
the GKS inequality, that

mk,f (B) ≡ mk(B, 0) ≥ mk−1(B, ξ{∆i}), (3.6)

where
ξ = ξ(β,Bmin) = atanh(tanh(β) tanh(Bmin)). (3.7)

This inequality holds with equality when Bi = Bmin for all i ∈ ∂T (k). Using the GKS inequality again,
we have that

mk−1(B, ξ{∆i}) ≥ mk−1(B, 0). (3.8)

10



Note that 0 ≤ ξ(β,Bmin) ≤ β. Since H 7→ mk(B,H{∆i}) is concave in H because of the GHS
inequality, we have that

mk−1(B, β{∆i})−mk−1(B, 0) ≤M
(
mk−1(B, ξ{∆i})−mk−1(B, 0)

)
, (3.9)

where
M = M(βmax, Bmin) = sup

0<β≤βmax

β

ξ(β,Bmin)
<∞. (3.10)

Thus, we can rewrite mk,+(B) using (3.4) and bound mk,f (B) using (3.6) and (3.8), to obtain

mk,+(B)−mk,f (B) ≤ mk−1(B, β{∆i})−mk−1(B, 0). (3.11)

By (3.9), we then have that

mk,+(B)−mk,f (B) ≤M
(
mk−1(B, ξ{∆i})−mk−1(B, 0)

)
≤M

(
mk(B, 0)−mk−1(B, 0)

)
, (3.12)

where we have used (3.6) in the last inequality.
By (3.4) and (3.5), mk,+(B) is non-increasing in k and, by (3.6) and (3.8), mk,f (B) is non-decreasing

in k. Thus, by summing the inequality in (3.12) over k, we get that

`
(
m`,+(B)−m`,f (B)

)
≤
∑̀
k=1

(
mk,+(B)−mk,f (B)

)
≤M

∑̀
k=1

(
mk(B, 0)−mk−1(B, 0)

)
= M

(
m`(B, 0)−m0(B, 0)

)
≤M, (3.13)

since 0 ≤ m`/0(B, 0) ≤ 1.

We are now ready to prove Proposition 1.7.

Proof of Proposition 1.7. Condition on the tree T (ρ,∞). Then h(t) ≡ atanh(mt,f (B)) satisfies the recur-
sive distribution (1.13) because of Lemma 2.3. Since, by the GKS inequality, mt,f (B), and hence also
h(t), are monotonically increasing in t, we have that B = h(0) ≤ h(t) ≤ B +D0 < ∞ for all t ≥ 0, where
D0 is the degree of the root. So, h(t) converges to some limit h. Since this holds a.s. for any tree T (ρ,∞),
the distribution of h also exists and one can show that this limit is a fixed point of (1.13) (see [7, Proof
of Lemma 2.3]).

In a similar way, h(t,+) ≡ atanh(mt,+(B)) satisfies (1.13) when starting with h(0,+) =∞. Then, h(t,+)

is monotonically decreasing and, for t ≥ 1, B ≤ h(t) ≤ B+D0 <∞, so h(t,+) also converges to some limit
h.

Let h be a fixed point of (1.13), condition on this h and let h(0,∗) = h. Then h(t,∗) converges as above
to a limit h∗ say, when applying (1.13). Note that h(0) ≤ h(0,∗) ≤ h(0,+). Coupling so as to have the
same {Kt}t≥1 while applying the recursion (1.13), this order is preserved by the GKS inequality, so that
h(t) ≤ h(t,∗) ≤ h(t,+) for all t ≥ 0. By Lemma 3.1,

| tanh(h(t))− tanh(h(t,+))| = |mt,f (B)−mt,+(B)| → 0, for t→∞. (3.14)

Since the above holds a.s. for any tree T (ρ,∞) and any realization of h∗, the distributions of h, h and h∗

are equal, and, since h is a fixed point of (1.13), are all equal in distribution to h.
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4 Dependence of ϕ on (β,B) via h∗: proof of Proposition 1.8

We will now prove Proposition 1.8 by first bounding the dependence of ϕ on h∗ in Lemma 4.1 and
subsequently bounding the dependence of h∗ on β and B in Lemmas 4.2 and 4.3 respectively.

Lemma 4.1 (Dependence of ϕ on h∗). Assume that distribution P has strongly finite mean. Fix B1, B2 >
0 and 0 < β1, β2 <∞. Let h∗1 and h∗2 be the fixed points of (1.13) for (β1, B1) and (β2, B2), respectively.
Let ϕh∗(β,B) be defined as in (1.12) with {hi}i≥1 replaced by i.i.d. copies of the specified h∗. Then, for
some λ <∞,

|ϕh∗1(β1, B1)− ϕh∗2(β1, B1)| ≤ λ‖ tanh(h∗1)− tanh(h∗2)‖τ−1
MK , (4.1)

where ‖X−Y ‖MK denotes the Monge-Kantorovich-Wasserstein distance between random variables X and
Y , i.e., ‖X − Y ‖MK is the infimum of E[|X̂ − Ŷ |] over all couplings (X̂, Ŷ ) of X and Y .

Proof. Let Xi and Yi be i.i.d. copies of X = tanh(h∗1) and Y = tanh(h∗2) respectively and also independent
of L. When ‖X−Y ‖MK = 0 or ‖X−Y ‖MK =∞, the statement in the lemma clearly holds. Thus, without
loss of generality, we fix γ > 1 and assume that (Xi, Yi) are i.i.d. pairs, independent of L, that are coupled
in such a way that E|Xi − Yi| ≤ γ‖X − Y ‖MK <∞.

Let β̂ = tanh(β1) and, for ` ≥ 2,

F`(x1, . . . , x`) = log

{
eB
∏̀
i=1

(1 + β̂xi) + e−B
∏̀
i=1

(1− β̂xi)
}
− 1
`− 1

∑
1≤i<j≤`

log(1 + β̂xixj), (4.2)

and let

F1(x1, x2) =
1
2

(
log
(
eB(1 + β̂x1) + e−B(1− β̂x1)

)
+ log

(
eB(1 + β̂x2) + e−B(1− β̂x2)

)
− log(1 + β̂x1x2)

)
. (4.3)

Then, with L having distribution P ,

ϕh∗1(β1, B1) = F0 + E[FL(X1, . . . , Xmax{2,L})] and ϕh∗2(β1, B1) = F0 + E[FL(Y1, . . . , Ymax{2,L})], (4.4)

for some constant F0 that is independent of β and B. In the remainder of the proof we will assume that
F1 is defined as in (4.2). The proof, however, also works for F1 as defined in (4.3).

We will split the absolute difference between ϕh∗1(β1, B1) and ϕh∗2(β1, B1) into two parts depending
on whether L is small or large, i.e., for some constant θ > 0 to be chosen later on, we split∣∣∣E[FL(Y1, . . . , YL)− FL(X1, . . . , XL)

]∣∣∣ ≤ ∣∣∣E[(FL(Y1, . . . , YL)− FL(X1, . . . , XL))1{L≤θ}
]∣∣∣

+
∣∣∣E[(FL(Y1, . . . , YL)− FL(X1, . . . , XL))1{L>θ}

]∣∣∣. (4.5)

Note that

F`(Y1, . . . , Y`)− F`(X1, . . . , X`) =
∫ 1

0

d

ds
F`(sY1 + (1− s)X1, . . . , sY` + (1− s)X`)

∣∣∣
s=t

dt

=
∫ 1

0

∑̀
i=1

(Yi −Xi)
∂F`
∂xi

(tY1 + (1− t)X1, . . . , tY` + (1− t)X`)dt

=
∑̀
i=1

(Yi −Xi)
∫ 1

0

∂F`
∂xi

(tY1 + (1− t)X1, . . . , tY` + (1− t)X`)dt. (4.6)
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As observed in [7, Corollary 6.3], ∂F`
∂xi

is uniformly bounded, so that

∣∣∣F`(Y1, . . . , Y`)− F`(X1, . . . , X`)
∣∣∣ ≤ λ1

∑̀
i=1

|Yi −Xi|, (4.7)

where λ1 is allowed to change from line to line. Hence,

∣∣∣E[(FL(Y1, . . . , YL)− FL(X1, . . . , XL))1{L>θ}
]∣∣∣ ≤ E

[
L∑
i=1

|Yi −Xi|c11{L>θ}]
]

≤ λ1‖X − Y ‖MKE[L1{L>θ}]. (4.8)

We compute, using that L ≥ 0,

E[L1{L>θ}] =
∞∑
x=1

P[L1{L>θ} ≥ x] =
θ+1∑
x=1

P[L1{L>θ} ≥ x] +
∞∑

x=θ+2

P[L1{L>θ} ≥ x]

=
θ+1∑
x=1

P[L ≥ θ + 1] +
∞∑

x=θ+2

P[L ≥ x] ≤ (θ + 1) · c(θ + 1)−(τ−1) +
∞∑

x=θ+2

cx−(τ−1)

≤ λ1θ
−(τ−2), (4.9)

so that ∣∣∣E[(FL(Y1, . . . , YL)− FL(X1, . . . , XL))1{L>θ}
]∣∣∣ ≤ λ1‖X − Y ‖MKθ

−(τ−2). (4.10)

By the fundamental theorem of calculus, we can also write

F`(Y1, . . . , Y`)− F`(X1, . . . , X`) =
∑̀
i=1

∆iF` +
∑̀
i 6=j

(Yi −Xi)(Yj −Xj)f
(`)
ij , (4.11)

with

∆iF` = (Yi −Xi)
∫ 1

0

∂F`
∂xi

(X1, . . . , tYi + (1− t)Xi, . . . , X`)dt, (4.12)

and

f
(`)
ij =

∫ 1

0

∫ t

0

∂2F`
∂xi∂xj

(sY1 + (1− s)X1, . . . , sYi + (1− s)Xi, . . . , sY` + (1− s)X`)dsdt. (4.13)

Therefore,

∣∣∣E[(FL(Y1, . . . , YL)− FL(X1, . . . , XL))1{L≤θ}
]∣∣∣ ≤ ∣∣∣∣∣E

[
L∑
i=1

∆iFL1{L≤θ}

]∣∣∣∣∣
+

∣∣∣∣∣∣E
 L∑
i 6=j

(Yi −Xi)(Yj −Xj)f
(L)
ij 1{L≤θ}

∣∣∣∣∣∣ . (4.14)

Since ∂2F`
∂xi∂xj

is also uniformly bounded ([7, Corollary 6.3]), we obtain∣∣∣∣∣∣E
 L∑
i 6=j

(Yi −Xi)(Yj −Xj)f
(L)
ij 1{L≤θ}

∣∣∣∣∣∣ ≤ λ2E

 L∑
i 6=j
|Yi −Xi||Yj −Xj |1{L≤θ}


≤ λ2‖X − Y ‖2MKE[L21{L≤θ}], (4.15)
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where λ2 is allowed to change from line to line. The second moment of a non-negative integer-valued
random variable M , can be written as

E[M2] =
∞∑
x=1

(2x− 1)P[M ≥ x], (4.16)

so that

E[L21{L≤θ}] =
∞∑
x=1

(2x− 1)P[L1{L≤θ} ≥ x] =
θ∑

x=1

(2x− 1)P[L1{L≤θ} ≥ x]

≤
θ∑

x=1

2xP[L ≥ x] ≤
θ∑

x=1

2x · cx−(τ−1) ≤ λ2θ
−(τ−3). (4.17)

We split ∣∣∣∣∣E
[
L∑
i=1

∆iFL1{L≤θ}

]∣∣∣∣∣ ≤
∣∣∣∣∣E
[
L∑
i=1

∆iFL

]∣∣∣∣∣+
∣∣∣∣∣E
[
L∑
i=1

∆iFL1{L>θ}

]∣∣∣∣∣ . (4.18)

By symmetry of the functions F` with respect to their arguments, for i.i.d. (Xi, Yi) independent of L,

E
[
L∑
i=1

∆iFL

]
= E [L∆1FL] = E

[
L(Y1 −X1)

∫ 1

0

∂FL
∂x1

(tY1 + (1− t)X1, X2, . . . , XL)dt
]
. (4.19)

Differentiating (4.2) gives, for ` ≥ 2,

∂

∂x1
F`(x1, . . . , x`) = ψ(x1, g`(x2, . . . , x`))−

1
`− 1

∑̀
j=2

ψ(x1, xj), (4.20)

where ψ(x, y) = xy/(1 + β̂xy) and

g`(x2, . . . , x`) = tanh

B +
∑̀
j=2

atanh(β̂xj)

 , (4.21)

while differentiating (4.3) gives

∂

∂x1
F`(x1, x2) = ψ(x1, g1)− ψ(x1, x2). (4.22)

Using that `P` = Pρ`−1, we have that, with K distributed as ρ,

E[Lψ(X1, gL(X2, . . . , XL))] = PE[ψ(X1, gK+1(X2, . . . , XK+1))] = PE[ψ(X1, X2)], (4.23)

because gK+1(X2, . . . , XK+1) is a fixed point of (1.13), so that gK+1(X2, . . . , XK+1) d= X2 and is inde-
pendent of X1. Therefore, one can show that

E[L
∂FL
∂x1

(x,X2, . . . , Xmax{2,L})] = 0, for all x ∈ [−1, 1]. (4.24)

Since ∂FL
∂x1

is uniformly bounded, L∂FL
∂x1

is integrable, so that, by Fubini’s theorem and (4.24),

E
[
L∑
i=1

∆iFL

]
= E

[
(Y1 −X1)

∫ 1

0
E
[
L
∂FL
∂x1

(tY1 + (1− t)X1, X2, . . . , XL)
∣∣∣X1, Y1

]
dt
]

= 0. (4.25)
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Furthermore, by (4.12) and the uniform boundedness of ∂F`
∂xi

,∣∣∣∣∣E
[
L∑
i=1

∆iFL1{L>θ}

]∣∣∣∣∣ ≤ E
[
L∑
i=1

|Yi −Xi|c11{L>θ}

]
≤ λ1‖X − Y ‖MKθ

−(τ−2). (4.26)

Therefore, we conclude that∣∣∣E[(FL(Y1, . . . , YL)− FL(X1, . . . , XL))1{L≤θ}
]∣∣∣ ≤ λ1‖X − Y ‖MKθ

−(τ−2) + λ2‖X − Y ‖2MKθ
−(τ−3). (4.27)

Combining (4.10) and (4.27) and letting θ = ‖X − Y ‖−1
MK yields the desired result.

Lemma 4.2 (Dependence of h∗ on β). Fix B > 0 and 0 < β1, β2 ≤ βmax. Let h∗β1
and h∗β2

, where we
made the dependence of h∗ on β explicit, be the fixed points of (1.13) for (β1, B) and (β2, B), respectively.
Then, there exists a λ <∞ such that

‖ tanh(h∗β1
)− tanh(h∗β2

)‖MK ≤ λ|β1 − β2|. (4.28)

Proof. For a given tree T (ρ,∞) we can, as in the proof of Proposition 1.7, couple tanh(h∗β) to the root

magnetizations m`,f/+
β (B) such that, for all β ≥ 0 and ` ≥ 0,

m`,f
β (B) ≤ tanh(h∗β) ≤ m`,+

β (B), (4.29)

where we made the dependence of m`,f/+ on β explicit. Without loss of generality, we assume that
0 < β1 ≤ β2 ≤ βmax. Then, by the GKS inequality,

| tanh(h∗β2
)− tanh(h∗β1

)| ≤ m`,+
β2

(B)−m`,f
β1

(B) = m`,+
β2

(B)−m`,f
β2

(B) +m`,f
β2

(B)−m`,f
β1

(B). (4.30)

By Lemma 3.1, a.s.,

m`,+
β2

(B)−m`,f
β2

(B) ≤ M

`
, (4.31)

for some M <∞. Since m`,f
β (B) is non-decreasing in β by the GKS inequality,

m`,f
β2

(B)−m`,f
β1

(B) ≤ (β2 − β1) sup
β1≤β≤βmax

∂m`,f

∂β
. (4.32)

Letting `→∞, it thus suffices to show that ∂m`,f/∂β is, a.s., bounded uniformly in ` and 0 < β1 ≤ β ≤
βmax.

From [7, Lemma 4.6] we know that

∂

∂β
m`,f (β,B) ≤

`−1∑
k=0

Vk,`, (4.33)

with
Vk,` =

∑
i∈∂T (k)

∆i
∂

∂Bi
m`(B, 0)

∣∣∣
B=B

. (4.34)

By Lemma 2.3 and the GHS inequality,

∂

∂Bi
m`(B, 0) =

∂

∂Bi
m`−1(B,H) ≤ ∂

∂Bi
m`−1(B, 0), (4.35)
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for some field H, so that Vk,` is non-increasing in `. We may assume that Bi ≥ Bmin for all i ∈ T (`) for
some Bmin. Thus, also using Lemma 2.3,

Vk,` ≤ Vk,k+1 =
∑

i∈∂T (k)

∆i
∂

∂Bi
mk+1(B, 0)

∣∣∣
B=B

≤
∑

i∈∂T (k)

∆i
∂

∂Bi
mk(B, ξ{∆i})

∣∣∣
B=B

=
∂

∂H
mk(B,H{∆i})

∣∣∣
H=ξ(β,Bmin)

, (4.36)

where ξ = ξ(β,Bmin) is defined in (3.7). By the GHS inequality this derivative is non-increasing in H, so
that, by Lemma 2.3, the above is at most

1
ξ

[
mk(B, ξ{∆i})−mk(B, 0)

]
≤ 1
ξ

[
mk+1(B, 0)−mk(B, 0)

]
. (4.37)

Therefore,
∂

∂β
m`,f (β,B) ≤

`−1∑
k=0

Vk,` ≤
1
ξ

`−1∑
k=0

[
mk+1(B, 0)−mk(B, 0)

]
≤ 1
ξ
<∞, (4.38)

for 0 < β1 ≤ β ≤ βmax.

Lemma 4.3 (Dependence of h∗ on B). Fix β ≥ 0 and B1, B2 ≥ Bmin > 0. Let h∗B1
and h∗B2

, where we
made the dependence of h∗ on B explicit, be the fixed points of (1.13) for (β,B1) and (β,B2), respectively.
Then, there exists a λ <∞ such that

‖ tanh(h∗B1
)− tanh(h∗B2

)‖MK ≤ λ|B1 −B2|. (4.39)

Proof. This lemma can be proved along the same lines as Lemma 4.2. Therefore, for a given tree T (ρ,∞),
we can couple tanh(h∗B) to the root magnetizations m`,f/+(B) such that, for all B > 0 and ` ≥ 0,

m`,f (B) ≤ tanh(h∗B) ≤ m`,+(B). (4.40)

Without loss of generality, we assume that 0 < Bmin ≤ B1 ≤ B2. Then, by the GKS inequality,

| tanh(h∗B2
)− tanh(h∗B1

)| ≤ m`,+(B2)−m`,f (B1) = m`,+(B2)−m`,f (B2) +m`,f (B2)−m`,f (B1). (4.41)

By Lemma 3.1, a.s.,

m`,+(B2)−m`,f (B2) ≤ M

`
, (4.42)

for some M <∞. Since m`,f (B) is non-decreasing in B by the GKS inequality,

m`,f (B2)−m`,f (B1) ≤ (B2 −B1) sup
B≥Bmin>0

∂m`,f

∂B
. (4.43)

Letting ` → ∞, it thus suffices to show that ∂m`,f/∂B is bounded uniformly in ` and B ≥ Bmin > 0.
This follows from the GHS inequality:

sup
B≥Bmin>0

∂m`,f

∂B
≤ ∂m`,f

∂B

∣∣∣∣∣
B=Bmin

≤ 2
Bmin

[
m`,f (Bmin)−m`,f (Bmin/2)

]
≤ 2
Bmin

<∞. (4.44)
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5 Convergence of the internal energy: proof of Proposition 1.9

We shall start by identifying the thermodynamic limit of the intensive internal energy:

Lemma 5.1 (From graphs to trees). Assume that the graph sequence {Gn}n≥1 is locally tree-like with
asymptotic degree distribution P , where P has finite mean, and is uniformly sparse. Then, a.s.,

lim
n→∞

∂

∂β
ψn(β,B) =

P

2
E
[〈
σ1σ2

〉
ν′2

]
, (5.1)

where ν ′2 is defined in (1.21).

Lemma 5.1 shall be proved in Section 5.1. Next, we will compute the derivative of ϕ(β,B) with
respect to β in the following lemma and show that it equals the one on the graph:

Lemma 5.2 (Tree analysis). Assume that distribution P has strongly finite mean. Then,

∂

∂β
ϕ(β,B) =

P

2
E
[〈
σ1σ2

〉
ν′2

]
, (5.2)

where ν ′2 is defined in (1.21).

Lemma 5.2 shall be proved in Section 5.2. Lemmas 5.1 and 5.2 clearly imply Proposition 1.9.

5.1 From graphs to trees: proof of Lemma 5.1

This lemma can be proved as in [7]. The idea is to note that

∂

∂β
ψn(β,B) =

1
n

∑
(i,j)∈En

〈
σiσj

〉
µn

=
|En|
n

∑
(i,j)∈En

〈
σiσj

〉
µn

|En|
. (5.3)

By the local convergence and the uniform sparsity, we have that, a.s. (see (1.10)),

lim
n→∞

|En|
n

= P/2. (5.4)

The second term of the right hand side of (5.3) can be seen as the expectation with respect to a uniformly
chosen edge (i, j) of the correlation 〈σiσj〉µn

. For a uniformly chosen edge (i, j), denote by B(i,j)(t) all
vertices at distance from either vertex i or j at most t, and let ∂B(i,j)(t) = B(i,j)(t) \B(i,j)(t− 1). By the
GKS inequality, for any t ≥ 1,

〈σiσj〉fB(i,j)(t)
≤ 〈σiσj〉µn

≤ 〈σiσj〉+B(i,j)(t)
, (5.5)

where 〈σiσj〉+/fB(i,j)(t)
is the correlation in the Ising model on B(i,j)(t) with +/free boundary conditions on

∂B(i,j)(t).
Let T (ρ, t) be the tree formed by joining the roots, φ1 and φ2, of two branching processes with

t generations and with offspring ρ at each vertex, also at the roots. Then, taking n → ∞, B(i,j)(t)
converges to T (ρ, t), because of the local convergence of the graph sequence. After all, a random edge
can be chosen, by first picking a vertex with probability proportional to its degree, and then selecting a
neighbor uniformly at random. Using this, one can show (see [7, Lemma 6.4]), also using the uniform
sparsity, that, for all t ≥ 1, a.s.,

lim
n→∞

E(i,j)

[
〈σiσj〉+/fB(i,j)(t)

]
= E

[
〈σφ1σφ2〉

+/f

T (ρ,t)

]
, (5.6)
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where the first expectation is with respect to a uniformly at random chosen edge (i, j) ∈ En and the
second expectation with respect to the tree T (ρ, t). By Lemma 2.3 and Proposition 1.7,

lim
t→∞

E
[
〈σφ1σφ2〉

+/f

T (ρ,t)

]
= E

[〈
σ1σ2

〉
ν′2

]
, (5.7)

thus proving the lemma.

5.2 Tree analysis: proof of Lemma 5.2

Let Xi, i ≥ 1, be i.i.d. copies of tanh(h∗), also independent of L. Then, with L having distribution P and
F` defined in (4.2) and (4.3),

ϕ(β,B) = F0 + E[FL(X1, . . . , Xmax{2,L})], (5.8)

for some constant F0 that is independent of β and B.
From Proposition 1.8 it follows that we can assume that β is fixed in h∗ when differentiating ϕ(β,B)

with respect to β. Thus, taking the derivative of (5.8) and using (4.23), one can show that

∂

∂β
ϕ(β,B) =

P

2
β̂ +

P

2
E [ψ(X1, X2)] =

P

2
E
[
β̂ +

X1X2

1 + β̂X1X2

]
=
P

2
E
[
β̂ +X1X2

1 + β̂X1X2

]
. (5.9)

Since, with h1, h2 i.i.d. copies of h∗,

E
[
β̂ +X1X2

1 + β̂X1X2

]
= E

[
tanh(β) + tanh(h1) tanh(h2)

1 + tanh(β) tanh(h1) tanh(h2)

]

= E
[
eβ+h1+h2 − e−β−h1+h2 − e−β+h1−h2 + eβ−h1−h2

eβ+h1+h2 + e−β−h1+h2 + e−β+h1−h2 + eβ−h1−h2

]
= E

[〈
σ1σ2

〉
ν′2

]
, (5.10)

where ν ′2 is given in (1.21), we have proved the lemma.

6 Thermodynamic quantities: proofs of Theorem 1.5 and Corollary 1.6

To prove the statements in Theorem 1.5 we need to show that we can interchange the limit of n → ∞
and the derivatives of the finite volume pressure. We can do this using the monotonicity properties of
the Ising model and the following lemma:

Lemma 6.1 (Interchanging limits and derivatives). Let {fn(x)}n≥1 be a sequence of functions that are
twice differentiable in x. Assume that

(i) limn→∞ fn(x) = f(x) for some function x 7→ f(x) which is differentiable in x;

(ii) d
dxfn(x) is monotone in [x− h, x+ h] for all n ≥ 1 and some h > 0.

Then,

lim
n→∞

d
dx
fn(x) =

d
dx
f(x). (6.1)
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Proof. First, suppose that d2

dx′2 fn(x′) ≥ 0 for all x′ ∈ [x− h, x+ h], all n ≥ 1 and some h > 0. Then, for
h > 0 sufficiently small and all n ≥ 1,

fn(x− h)− fn(x)
−h

≤ d
dx
fn(x) ≤ fn(x+ h)− fn(x)

h
, (6.2)

and taking n→∞ we get, by assumption (i), that

f(x− h)− f(x)
−h

≤ lim inf
n→∞

d
dx
fn(x) ≤ lim sup

n→∞

d
dx
fn(x) ≤ f(x+ h)− f(x)

h
. (6.3)

Taking h ↓ 0 now proves the result. The proof for d2

dx2 fn(x) ≤ 0 is similar.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We apply Lemma 6.1 with the role of fn taken by B 7→ ψn(β,B), since

Mn(β,B) =
1
n

∑
i∈[n]

〈σi〉µn
=

∂

∂B
ψn(β,B), (6.4)

and limn→∞ ψn(β,B) = ϕ(β,B) by Theorem 1.4 and B 7→ Mn(β,B) is non-decreasing by the GKS
inequality. Therefore,

lim
n→∞

Mn(β,B) = lim
n→∞

∂

∂B
ψn(β,B) =

∂

∂B
ϕ(β,B), (6.5)

which proves part (a).
Part (b) follows immediately from Proposition 1.9 and the observation that

Un = − 1
n

∑
(i,j)∈En

〈
σiσj

〉
µn

= − ∂

∂β
ψn(β,B). (6.6)

Part (c) is proved using Lemma 6.1 by combining part (a) of this theorem and that B 7→ ∂
∂BMn(β,B)

is non-increasing by the GHS inequality.

We can now prove each of the statements in Corollary 1.6 by taking the proper derivative of ϕ(β,B).

Proof of Corollary 1.6. It follows from Theorem 1.5 (a) that the magnetization per vertex is given by

M(β,B) =
∂

∂B
ϕ(β,B). (6.7)

Similar to the proof of Lemma 5.2, we can ignore the dependence of h∗ on B when differentiating ϕ(β,B)
with respect to B by Proposition 1.8. Therefore, with β̂ = tanh(β),

∂

∂B
ϕ(β,B) =

∂

∂B
E
[
log

(
eB

L∏
i=1

{1 + tanh(β) tanh(hi)}+ e−B
L∏
i=1

{1− tanh(β) tanh(hi)}
)]

= E
[
eB
∏L
i=1(1 + β̂ tanh(hi))− e−B

∏L
i=1(1− β̂ tanh(hi))

eB
∏L
i=1(1 + β̂ tanh(hi)) + e−B

∏L
i=1(1− β̂ tanh(hi))

]

= E


eB
∏L
i=1

(
1+β̂ tanh(hi)

1−β̂ tanh(hi)

)1/2

− e−B
∏L
i=1

(
1−β̂ tanh(hi)

1+β̂ tanh(hi)

)1/2

eB
∏L
i=1

(
1+β̂ tanh(hi)

1−β̂ tanh(hi)

)1/2

+ e−B
∏L
i=1

(
1−β̂ tanh(hi)

1+β̂ tanh(hi)

)1/2

 , (6.8)
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where L has distribution P and {hi}i≥1’s are i.i.d. copies of h∗, independent of L. Using that atanh(x) =
1
2 log

(
1+x
1−x

)
the above simplifies to

E
[
eB
∏L
i=1 e

atanh(β̂ tanh(hi)) − e−B
∏L
i=1 e

−atanh(β̂ tanh(hi))

eB
∏L
i=1 e

atanh(β̂ tanh(hi)) + e−B
∏L
i=1 e

−atanh(β̂ tanh(hi))

]
= E

[
tanh

(
B +

L∑
i=1

atanh(β̂ tanh(hi))

)]
.

(6.9)
By Lemma 2.3, this indeed equals E

[〈
σ0
〉
νL+1

]
, where νL+1 is given in (1.18), which proves part (a).

Part (b) immediately follows from Theorem 1.5(b) and Lemma 5.2.
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