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Abstract

We study the antiferromagnetic Potts model on the Poissonian Erdds-Rényi random graph. By
identifying a suitable interpolation structure and an extended variational principle, together
with a positive temperature second-moment analisys we prove the existence of a phase transition
at a positive critical temperature. Upper and lower bounds on the temperature critical value
are obtained from the stability analysis of the replica symmetric solution (recovered in the
framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.
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1 Introduction and main results

In this paper we prove some rigorous results on the antiferromagnetic g-Potts model on the Pois-
sonian Erd6s-Rényi random graph of parameter c¢. This model is related to diluted spin glasses of
disordered statistical mechanics on one side and to the the graph coloring combinatorial problem on
the other. Since the Erdés-Rényi random graph has a locally tree-like structure and large loops, the
statistical mechanics model with antiferromagnetic interactions has been reported to display some
spin glass behavior in the physics literature [29]. In particular it has been argued that the one-step
replica symmetry breaking solution does not get improved by a higher number of steps [20]. On
the other hand it is well known that antiferromagnetic Potts models on graphs are related, at zero
temperature, to the graph coloring problem. This consists in placing colors on the graph vertices in
such a way that two of them connected by an edge have different color. Some mathematical analy-
sis, from the combinatorial perspective, has been obtained in [I] for the graph coloring problem. In
particular it was proved there that for a given number of colors there exists a critical connectivity
value which separates the colorable from the un-colorable phases. The connection among the two
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approaches has emerged in recent times also within the algorithmic setting. A method has been
developed to study graph colorability [8] based on ideas from the physics of disordered systems,
in particular on the replica symmetry breaking scheme introduced within the mean field theory of
spin glasses [21].

In this paper we obtain a full control of a region in the high temperature phase of the model:
computing the free energy and identifying a phase transition at a critical 3% (c,q). Our main
result is the following.

Theorem 1.1 For a given number of colors ¢ > 1 and a Poissonian Erdds-Rényi random graph of
parameter ¢ > 0, define the ”annealed” pressure

1—e B
P(B,c) :lnq—l—cln(l— c > . (1)
2 q
Define moreover
00 for ¢ < gs(q),
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c,q) =
s (¢ ) —In (1 -1 ) otherwise,
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There is mo phase transition at any finite temperature if ¢ < c1(g). For ¢ > min{c¥%(q), cent(q)},
there exist a phase transition at the critical value B (c, q) with

Bi(c,q) < B (e, q) < min{B¥5(c,q), Bent(c, @)}

The quenched pressure is equal to P(B,c) for B < Bi(c,q) and it is different (stricly less) for
B > min{ﬁégg’(c7 Q)wgent(cv Q)}

The proof of the theorem will be a combination of different results obtained in the following
sections. The method we follow combines ideas developed within the rigorous theory of spin glasses
[3] with second moment bounds [I]. A full treatment of the ferromagnetic Ising case has been
given in [9] for locally tree-like random graphs and extended in [I2]. The techniques used there
are heavily based on the use of ferromagnetic Griffiths-Kelly-Sherman and Griffiths-Hurst-Sherman



inequalities and do not apply to our case. For the antiferromagnetic model we introduce here an
interpolation scheme and prove its monotonicity (see [6] for an alternative interpolation scheme in
the Bernoulli case).

The paper is organized as follows. The model is defined in section 2 and the interpolation is
introduced in section 3. The extended variational principle that applies to our case is formulated
and studied in section 4. Derrida-Ruelle like trial states are described in section 5 and then used in
section 6 to obtain replica symmetry breaking bounds. Section 7 develops the constrained second
moment computation, along the lines of the previous zero-temperature computations. Details of the
proofs and explicit computations are included in the Appendices and make the paper self-contained.

2 The model

We start by considering the general set-up for the g-state Potts model for ¢ € N. We use the
notation from combinatorics

lq] = {1,2,...,q}.

We consider a set of N vertices, such that for each i = 1,..., N, there is a spin variable o; € [g].
Given a subset S C R let My (S) be the set of all N x N matrices with entries in S. The g-state
Potts Hamiltonian is

N
Hy : [qN xMy(R) =R,  Hy(o,J) = > Ji;d(01,05),
i,j=1

where §(r, s) is the Kronecker delta for r,s € [¢]: 1 if r = s and 0 otherwise.
For a general J € My (R), we may define the usual thermodynamic quantities.

partition function: Zn(J) = Z e~ Hn(ed) (2)
o€lq]V
67HN(O',J)
Boltzmann-Gibbs measure: oelgV = wng(o) = (3)

Zn(J)

Boltzmann-Gibbs expectation: (f: [N = R) = (fing = Z fo)wn g(o). (4)
o€lgl™

For now, we have absorbed the inverse temperature 8 into the coupling matrix J. But later we will
make it explicit.
For a general R € N, and a function of R replicas, F : ([¢]V)® — R, we use the same notation

R
(F\ng = > FeW,. .., c™) [ wna(@).
r=1

oW, o®e[gN

Often we gather all R replicas as
Sr = (eW, ..., 0@,

The set of all ¥p’s will be denoted [¢]V*F = {(cM), ..., a®) . oM . o) ¢ [g]V].



The finite-volume approximation to the pressure is
(7) = 5 nZn(J)
PN = ¥ 4N .

If J is random then py(J) is, too. But we will more frequently use a different notation for the
quenched pressure, where we take the expectation of py(J) over the disorder distribution of .J.

2.1 The disorder distribution
Let Ny denote {0,1,2,...}. For each A > 0, let 7y : Ny — [0, 1] denote the Poisson-A mass function

k
m™(0) = e, (k) = e % for ke {1,2,...}. (5)

A key feature for the interpolation method of Franz and Leone [I3] for Poisson couplings, general-
izing the Guerra-Toninelli interpolation for Gaussians can be called Poisson summation by parts:

Sl = mk =) —m) > B = BRI+ 1) - S0 (®

Given ¢ € My ([0, 0)), define the measure Py . on My (Ny) as

N
Pne(A) = Z 14(J) H e, /2N) (Jig) -

JeMn (No) 1,j=1

Let Ex . denote the expectation with respect to the probability measure Py .. It is frequently

useful to use the notation
(- Dwpe = Bre [ Inp] - (™)

Given f € [0,00) and ¢ € My ([0, 00)), let us define the quenched pressure

pn(B,¢) = Enc[pn(BT)] . (8)

Given ¢ € [0,00), let Py, denote the measure Py . for the matrix ¢ such that ¢;; = ¢ for all
i,j € {1,..., N}, and similarly let Ey . and pn (8, c) denote En . and pn (8, ¢) for this choice of c.

Similarly, let
(- Dwvpee

denote << e >> N..e for this special choice of e¢. Occasionally it is necessary to explicitly denote the
dependence of px (8, ¢) on ¢ in which case we write py (8, ¢, q).

3 Interpolation

In the present model we use interpolation to prove existence of the thermodynamic limit of the
quenched pressure (see [6] for the antiferomagnetic model with Bernoulli dilution, not the Poissonian
case we consider here). The method of interpolation is a well-known tool for disordered mean-field
models of statistical mechanics (see [13] for the diluted spin-glass and [I5] for the Sherrington-
Kirkpatrcik model).



Lemma 3.1 Given any differentiable curve t — ¢(t) in My ([0, 00)),

d 1 N dC,‘j -8
abvBet) = 555 >~ Enew [ln (1 —(1-e )<5(Ui’gj)>N,,3J>] :

Proof: This follows from a well-known calculation which we include for the benefit of the reader.
By @ and the chain rule,

1 de;j
—E J)] = — | J — J
7 ENe() [P (BJ)] N 2, 2t ENe {PN(ﬁ ) Tt (B )] ;
But since pn(8J) = N~1In Zn(BJ),
1 ZN(ﬁJ) T Jiit1 1 85 ( )

J —pn(BT) = =1 el R (O S
~(BT) Jij—=Jij+1 pr(BJ) N " Zn(BJ) N A N.BJ
Using the fact that e=#%(?::9) =1 — (1 — e¢79) §(0y, 0;), this gives the desired result. O

The first corollary is existence of the thermodynamic limit.
Corollary 3.2 For 8,c¢ >0, and any N1, Ny € N,
N1 N2
—_ —_— . 9
pN1+N2(/Bv ) = N+ N pN](B7 )+ N, + Ny pN2(Bvc) ( )

This states that the sequence (py (8, ¢))nen is superadditive. We will prove this in Section
Let us now state an inequality for superadditive sequences.

Lemma 3.3 If (zn)nen satisfies (M + N)xpyyn > Mapy + Nay for all My N € N, then

. o (M+N)Z‘M+N—MJ,‘M
hmlnfo = limsupxy = sup xy = limsup liminf .
N—oo NeN Nooo M—oo N

The first part of this lemma is a result due to Fekete. The last equality follows from an argument
in [3]. It will be useful later. We will review the proof in Section
Let us now introduce an important function, which is called the annealed pressure

1—e#?

P(B,c) = lnq—|— 5 In(1- . (10)
q

We call it annealed with a slightly different meaning than the spin glass case, as it will be clear in

the following. This function provides an upper bound for the quenched pressure px (8, ¢) for every

N € N, as we will show next. In order to state the precise result, recall that X = (0(1), e ,CT(R)) €

[q)V*E is a notation gathering R replicas. Given g, let us define the R-replica empirical measure
on [q]:
1 MR
_ (r) - R
psg(s =N Eﬂ 7|_|15(0i ,80) for  s=(s1,...,8r) €[q]". (11)



Theorem 3.4 For every 8,¢ > 0,

o0

PB.0)—pn(B) = 23 LT Z/ (as) = ™)), e (12)
R=0 ,

s€lq)?

As a particular implication, note that px(8,c¢) < (B, ¢) for all N. Along with Corollary and
Lemma [3.3] this implies that the thermodynamic pressure exists as a finite limit

€

£
p(B.¢) ¥ lim py(B,0),
— 00
and it satisfies p(3,c) < £(5,¢).

Remark 3.5 When it is necessary to explicitly denote the dependence on q we will write p(f, ¢, q)
and Z(B,¢,q).

The explicit formula for Z(8,c) — p(B,c) is relevant when trying to determine the annealed
region: the parameter space for (3,c) € [0,00)? such that the inequality is saturated, p(3,c) =
P (B, c).

The final application of interpolation is the analogue of Guerra replica symmetry breaking
bounds [I4]. We introduce this in the next section in order to give the full definition of the random
spin structure which aids in understanding those inequalities. See [23], [7], [28] [5] for similar results.
We include proofs for the benefit of the reader in the Appendix.

Before ending this section let us note another elementary corollary which is useful in the next
section.

Corollary 3.6 Suppose that ¢V and c¢?) are both in My ([0,00)). Then,

pr (6, €?) = pi(8,eD)| < oy —ej| -

i,j=1

In particular, for two different numbers cy,co > 0, we have

N (B, c2) — pv(By2)] < %ﬁ\cf«n .

4 Extended Variational Principle

We follow here the method introduced by Aizenman, Sims and Starr in [3 4]. We start this section
by defining a discrete random spin structure. The definition comes from the physicists’ cavity step,
as defined by Franz and Leone [13]. Recall that with the usual topology [0,1] is compact. Let
[0, 1] be the set of all & = (&1, &, ... ) such that each & € [0,1]. With the product topology, [0, 1]¥
is also compact, and metrizable. For example, a metric compatible with the product topology is
d(§.¢) = Z?zozl 27"€n — Cal-

Let A denote the subset consisting of those & € [0, 1] satisfying the additional conditions

& > & > ... and & +&+ ... < 1.

This is a closed set, hence also compact.



We also define A; to be the subset consisting of those & € A such that Y > &, = 1. This is
not a closed set, but it is a Borel set: (-_, Ur_ {d> 11 & >1—-m™ '}

Let ¢ refer to the set of 7 = (71,72,...) with each 7,, € [g]. Let ¢"*N refer to the set of all
T = (M, 73) ) with each 7" € ¢~. With the product topology, ¢"*¥ is also compact and
metrizable.

Finally, let Sy, denote the set of all bijections 7 : N — N such that {n : w(n) # n} is finite.
Given 7 € ¢" and 7 € S., we defined 7 o w € ¢" such that (7 o7), = Tr(n)-

Definition 4.1 (a) Let .# denote the set of all Borel probability measures on A x g™~
(b) Let & denote the subset of all L € A satisfying additional hypotheses:

(1) LEET) : £€hi}) = 1,

(ii) For any 7 € Ss, and any Borel subset A C A x ¢"*N
LHET) : (& WomrPon, . ..)) € A}) = L(A).

The set of all discrete random spin structures is .. In Section[A.2 we will discuss a generalization of
this definition which represents a compactification. But for now, we define the cavity field functions.
Given k, let I € {1,..., N}* denote (I, ..., I}). Let us denote the union

Iy & U{l,...,N k
k=0

Given I € Iy, we define |I| to be that integer k& € Ny such that I € {1,..., N}*. Note that for
k = 0, we just denote I to be a placeholder (). We define a probability measure on this space

> 1),

NE
k=0 Ie{l,...,N}*

oo

I?PBN,C(A) =

Let E N,c be the associated expectation. We also define a Hamiltonian

7|
Hy:In x [¢N x [¢Y = R, NI, T,0) 257“01

For I = (), we have |I| = 0 and the empty sum is interpreted as zero. With all of this set-up, we
define the “interaction” term of the cavity field function to be

~ 1 s ~
¢V (B,e,L) = / Exe [ € D exp (—5HN(I,T<Q>,U)) dc(e, 7).  (13)
Ay x[q]>N o€V
The “reaction” (or self-energy) term is

Gﬁ?w,c,.c)/M 3 ‘N/Q (Zsaexp( ﬂzaéi‘:)l,é;‘?))das,ﬂ.
(14

q]NXN K—0

The analogue of Guerra’s replica symmetry breaking bounds ([I4]) are the following.



Theorem 4.2 For any 8,¢ >0 and N € N, and for any L € .7,

pN(ﬁac) S Gg\lf)(ﬁacaﬁ) - Gg\%)(ﬁ,c,ﬁ)

We will prove this in the Appendix.

In the next section we will use random spin structures coming from the Poisson-Dirichlet,
Derrida-Ruelle random probability cascade. But first, we try to motivate the present formulation
by indicating how to obtain opposite bounds using the Boltzmann-Gibbs random spin structures.
It is these opposite bounds that are most closely related to the physicists’ original perspective on
the cavity step [22)].

Theorem 4.3 For any §,¢ > 0,
lim B = lin inf G B E . 15
Nl pN( ) C) Nl 165” N( » Gy ) ( )

We do not use this theorem for any further applications in this paper. But its proof helps to
motivate the definition of the N-step cavity field functionals. The proof of the theorem will be
given in the next subsection.

4.1 Boltzmann-Gibbs Spin Structures

Now we construct an example of a discrete random spin structure, which we will call Ly g,. This
is derived from the Boltzmann-Gibbs distribution, itself.

Let J be distributed according to Py .. Let N'=¢". Let oW, ..., 6™) be any enumeration of
[q]V. For a € {1,...,N}, let

o = wnps(c®).

For o > N, let &, = 0 and let o(®) € [¢]¥ be any configuration. The choice of o(® does not matter
since &, = 0. Let I, I, --- € {1,..., N} be i.i.d., uniformly distributed on {1,..., N}, independent
of J. For each a € N, let 7(*) € [¢]" be

T,Ea) = agj) for k € N.
The measure Ly g,. describes the marginal distribution of (&, 7).
The key identity for proving Theorem [£.3]is as follows.

Lemma 4.4 We have the identities

M N
Gg\?)(ﬁycvﬁM,ﬁ,c’) = ﬁ (p[\/f (676/ + L) _pM(ﬂacl)> )

and

M+ N
N

where pn (8, c) for a general matriz ¢ € My ([0,00)) was defined in (@ and the matriz &™) ¢

M4+ ([0, 00)) is defined as

. M
G%?C(ﬁ"c]v‘aﬁﬁl) = PM+N (B’C(Z\/LN)> - Fp]\/f(67c/)a

dA+gp) i< M,
EMN = S+ Ny ifi< M, j>Morifj<M,i> M,
0 ifi,j> M.



We will prove this lemma in the Appendix. It follows from the definitions and infinite divisibility
of the Poisson process. Infinite divisibility is merely the mathematical condition related to the fact
that the Poisson random variables admit interpolation.

The physicists’ cavity step amounts to considering a very large system in equilibrium. We will
say that the size is M. Then the physicists consider removing a smaller number of spins, say
N < M, which creates a cavity in the system. But mathematically one can instead consider adding
N spins. (In other words the added spins are a cavity in a system of size M + N.)

This has two effects. Firstly, each of the N spins interacts with all the M spins in a mean-field
way, i.e., in a way that represents the underlying symmetry of the model, called exchangeability. To
leading order this is represented by G%). The simplification occurs because the leadin order terms
in the interaction are linear. In other words, for each of the N spins it is as if it feels a random
external magnetic field, with the distribution of this magnetic field determined by the M spins in
“equilibrium,” and some extra random couplings.

The second effect is a reaction or self-energy term for the M spins. This is because, being a
mean-field model, the parameter of the model ¢ is actually being scaled by the reciprocal of the
system size. So changing the system size amounts to a renormalization of the connectivity from c
to c(1+4%). To leading order, the self-energy for the M spins is represented by Gg\?) which actually
does not depend on the spins o1, ...,0n5 at all, only the spins in the M “equilibrium” system.

There are other terms in the Hamiltonian, amounting to interactions with two or more spins
among the N subsystem. But taking all these terms together still only gives a lower-order effect
which may be neglected in the thermodynamic limit. In essence, Lemma [£:4] is just a calculation
to show that we have correctly interpreted the physicists’ cavity step.

Proof of Theorem The upper bounds of Theorem [£.2] imply that

o e (1) A2
p(B,e) = lim py(B,c) < 1}&1&1?22; (GN (B,e, L) — Gy (B,C,C)) :
All we need to do is to establish the opposite bound,
. . (1) 2)
> — .
p(B,c) = hfvnjfop Jnf, (GN (B,¢,L) =GN (B, c, E)) (16)

From Corollary [3.2] and Lemma we know that

p(B,c) = lim sup limin (M AN ran(8.0) ~ 2 (5, c>) . (17)

N—ooo M—oo

But by Lemma [£.4] we know that

M+ N R M cN
GLAB. Las ) =GRV (Bc Lasse) = S (8.64°) = ur (5.0 + 57 ) - (1)

N
where
JA+ L) ifd,j< M,
dMN = S+ Ny i< M, j>Morifj< M,i> M,
0 ifi,j > M.

Choosing ¢ = ¢/(1 + 2%), we see that

M N M M N
WpM (5acl+cz\4) *WPM(@C) =N <pM (Bvl_’_cN+Cjw> PM(BaC)> .

M



Using the bounds from Corollary this implies

BeN

M N M
‘NPM (5a0/+0)pM(5aC) < m (19)

M N

Similarly, using the fact that par+n (8, ¢) = pam+n (5, ¢) for the matrix ¢ with ¢;; = ¢ for all 4, j, we
see that (choosing ¢’ as before)

BeN
< )
- M+ N

M+ N . M+ N
‘ PM+N (57 C(M’N)) - pym+n(B,c)

N N

using the matrix-version bound from Corollary So, putting this together with and ,

we have

M+ N
N

M 3B8cN
‘Gg\ll?c(ﬂaEM,B,c’) ~GR(B,e,Laper) — < pu+n(B,¢) — pM(ﬂﬂ))‘ < 5 Ae

N M+N)’

Since this bound vanishes in the limit M — oo, before N goes to co, and since the Boltzmann-Gibbs
spin structure is just one particular choice of a random spin structure, so that the true infimum is
no greater than this, we see that does imply , as desired. O

5 Derrida-Ruelle Construction
Theorem shows that the cavity functional
Gg\lf)(ﬁacv‘c) - Gg\%)(ﬁ,C, ‘C)

needs to be minimized over discrete random spin structures £ € .%’. The optimal choice of the
measure has been conjectured to be described by a construction based on the Derrida-Ruelle random
probability cascade [I1], 26]. The results we obtain in this section provide a rigorous proof to some
physicist’s results obtained with heuristic methods in [20, [30].

5.1 The Ultrametric space

The Derrida-Ruelle probability cascade construction is based on a rooted tree with finitely many
levels. Let us define 7o = {0} where () will denote a single vertex at the root level. For £ € N, let
T: = N’. So a typical element of Ty is & = (avy, ..., ) with aq,...,a, € N. Let us denote this as
a’ = (ay,...,a) in order to explicitly denote the depth £.
Given o' = (aq, ..., ay) in Ty, let us define o/;k = (a1,...,ap) in Ty foreach k = 1,..., . Then,
given L € N, we define a tree of depth L as .77, which has vertex set
def

I, =ToUuTiu---uTg,

and such that the mother of each a! = (1) in 77 is the root () € Ty and the mother of each al e T,
for/ =2,...,Lis afk. As usual for trees, two vertices are connected if and only if one is the mother
of the other one, called the daughter.

The leaf set of a tree is the set of all vertices which have no daughters. So this is 7 for J7.
Next we define a family of random probability distributions on the leaf set.

10



Let V7, denote the set of all L-tuples m(X) = (my,...,mp) satisfying
O0<m < ...<mp <1.

For consistency, we define Vy = {0#}. For each L € Ny and each m) e Vi, we will define a
probability distribution giving rise to random variables gm@) (@) for each a) € Ty, which are
nonnegative and such that

Yo Guw(a) =1,

all)eTy,

almost surely, for each choice of m(%). We use the hat to denote normalization, since we will con-
struct the probability measure Em@) (a®)) by normalizing an almost surely normalizable measure
i (D). .

We can define this inductively as follows. We start by defining £y to be the unique (hence
non-random) probability measure on 7Tp: E@((Z)) =1.

5.2 The Poisson-Dirichlet Derrida-Ruelle distributions

To extend to the definition of &,,,(r) to L € N and m) ¢ Vp, we will first quickly review the
definition of a general Poisson point process. This is because our construction uses Poisson-Dirichlet
distributions, based on Poisson point processes. But also, for certain proofs, the general definition
of a Poisson point process will be useful.

Suppose that X is a locally compact metric space. Suppose that A is a locally finite Borel
measure on X, meaning that for any compact set K C X, we have A(K) < oo. Given this, one may
define the Poisson process with intensity measure A to be =, a random point process, meaning that
= is a random Ny-valued measure. Given n € N and given disjoint compact sets Ki,..., K, C X,
we have the marginal distribution

PE(KL) =ki,...,E(Ky) =ky,) = H'R—A(Ki)(ki)v
i=1

for each choice of kq,...,k, € Ng. We remind the reader that the Poisson distribution was defined
in ).

Due to infinite divisibility this is a consistent definition in the sense of the Kolmogorov consis-
tency conditions. It also leads to the alternative description in terms of the moment generating
functional. Suppose that f: X — [0,00) is any Borel measurable function. Then

E {eXp (— /X f@:)dg@))] — exp (— /X (1—e‘f(9”))dA(a:)> . (20)

This identity being true for all nonnegative, Borel measurable functions is equivalent to the consis-
tent family of marginal distributions described above. This general framework will be useful shortly.
Among many good reviews of Poisson processes, Ruelle’s paper on Derrida’s REM and GREM is
an exemplary reference [26].

Now we define the random measure é\m(l) on 71 = N! for each choice of m™) = (m;) with
mq € (0,1). Let us denote my as just m for this case, L = 1. Let A, be the following locally finite
measure on X = (0, 00),

dAp(x) = maz~™ tdx.

Let = be the An example of an easy calculation with is the following:

11



Lemma 5.1 For any p > m and any A > 0,

(o) o0
E [exp (—)\/ aP dE(m))} = exp (—)\m/p/ I dw) .
0 0

This will be proved in Section This implies that fooo x dE(x) is in (0, 00), almost surely. (Taking
A to 0 we see that the probability to be oo is zero, and taking A — co, we see that the probability
to be 0 is zero.) In turn this implies that almost surely we can identify points

&1 286 >...>0,

such that Z(A) = 377, 14(&,) for every Borel set A C (0,00), and > 7, &, is in (0, 00), almost
surely. A key property is the following stability property, whose proof may be found in the paper

2:

Theorem 5.2 Suppose that X1, Xs,... are i.i.d., positive random multipliers, a.s., independent
of &1,&, ..., and such that E[X"] < co. Then the random point process A — > > | 14(X &) is
equal in distribution to the random point process A Y oo 14(c&,) for ¢ = (E[X])V/™.

We will give a few hints of the proof in the Appendix.
Then we define {(,,)((«)) for all @ € N as follows:

£a

= - fOI‘OzEN.
§1+&+...

The distribution of this random discrete probability measure is called the Poisson-Dirichlet distri-
bution PD(m,0). It is one branch of the two-parameter Poisson-Dirichlet distributions (see [24]).
Note that we have now defined Emm (W) for all m™) € V; and aV) € T;, satisfying the desired
conditions, almost surely. Now we define é\m(L) for all L > 1 and m®) € Vy,, inductively. We have
defined it above for L = 1 and m™) = (m) € V;. Assuming L is in {2,3,...} and that we have
defined the measure for all depths less than L, we treat the case of depth L as follows.
First, using the induction hypothesis we may assume the existence of random variables

~

§m(rL) (a(L_l)) for all X~V € T4,

L—-1

where m(ri)_l is defined as the restriction to the first L — 1 coordinates of m) = (my,...,mgp).

Then, independently of that, for all a&=1 € T;_;, let us take 2@ ™) ¢4 be a Poisson point
process with intensity A,,,, such that all the Poisson point processes are independent for different
choices of a&=Y € T;_;. Each one may be written as

(L-1)

=(c
=

)(A) = Z lA(f,(f‘(Lfl))) for all measurable A C (0, o),
n=1

all-b alt—b . .
for some random numbers §§ ) > fé ) > --- > 0. The following is a corollary of Lemma
and Theorem which we will prove this in the Apeendix.
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Corollary 5.3 Assuming 0 < mq < --- < myp then the nonnegative random variable

def ~ (ef7 )
Z(mP)) = E Em(D) 1(Oz(ri)_l) “bag
aer,

satisfies 0 < Z(m")) < 0o, almost surely.
Then we complete the induction step by defining

s def 1

Eman (@) 1= Zroy |

¢5)
~ (L) (CIra
Eur (affl )& forallae Ty,
which is well-defined and normalized, almost surely.
Next one constructs a probability measure on spins, indexed by leaves of the tree.

5.3 The measures on measures construction

Let M; denote the set of all probability measures on [¢]. This is a finite-dimensional simplex. Using
the topology of weak-convergence on probability measures this simplex has its usual topology. In
particular it is compact and metrizable.

Let Mo denote the set of all Borel probability measures on Mj. Then, with the topology of
weak convergence, this is also compact and metrizable. Indeed, the set of Borel measures on a
compact, metrizable set is always itself compact and metrizable when equipped with the topology
of weak-convergence.

Therefore, inductively, for all £ € N, we let M1 denote the set of all Borel probability measures
on My, equipped with the topology of weak-convergence. We denote a measure in My, as p(é+1).
But we note that the standard notation for its differential is somewhat cumbersome dp“*+1) (u(%)).

Now let &) denote any measure in M. This is our input. In order to initialize the induction
step, we change notation slightly,

it

For each a'V) = (a;) € 77, let u‘(jl_)l) be a random element of My, distributed according to ,ug)L),

and such that they are all independent for different choices of a(*) e 7T7.
Continue inductively. For £ = 2,...,L — 1 let F,_; denote the o-algebra generated by all the
random variable that were constructed at the previous level,

pEED o all k < ¢ and @Y € Tiq.

o(k—1)

We construct uff(;f) for all ) € T; as follows.

Conditionally, given Fy_1, let MSXL(Z)Z) be a random element of My _y, distributed according to
(L—41)
1

(€)
Qg

are all conditionally independent, conditional on F.
Finally, given all this, for each a") € 77, and each i € N, let Ti(a(L)) be distributed according

to ,u(l()L> , such that they are all conditionally independent, conditional on F7. Let us define

Qg

. More precisely choose these random variables /LEXL(;)Z), for each a) € Ty, such that they

(@) = (n(a®), n@®),...) € g7,

13



for each a®) € T;. Then we may consider the pairs consisting of (Em(L)(a(L)))a(L)ETL and
(T(a(é)))au)en. Note that 77, is countable. We denote the distribution of such pairs as £, ) ) -

Then since the set of possible «, here replaced by a'’) € 77, is countable, this is an example of a
discrete random spin structure in . as in Definition

Remark 5.4 The necessity to introduce the measure on measure structure comes from the fact
that, unlike in gaussian spin glass where the infinitely divisible distribution allows a continuous
parametrization of ansatz, here the lack of the property of infinite divisibility forces the introduction
of discrete iteration ansatz in the optimization procedure.

6 “Replica Symmetry Breaking” bounds

We obtain here rigorous bounds as a consequence of Theorem

6.1 One level trees and the annealed bounds

The simplest case to consider is L = 1. Then m(Y) = (m;) for some m; € (0,1). For this case, we
choose to rewrite m; as just m € (0,1), so that m(!) = (m). In this case we have a Poisson-Dirichlet
distribution which according to our previous notation is

o~

Emy (1), Em (), - .

We prefer to work directly with the Poisson point process 1 > £ > - -+ > 0, with intensity measure

A, defining
Z = an»
n=1

which is almost surely in (0, 00). Then g(m)((a)) is equal to &,/Z. It will turn out that the effect
of the normalization Z will cancel in the formula for

GV (B, Lont) y1) = GR(B. 0 Loy ) -

But by using the Poisson point process directly, instead of the normalized Poisson-Dirichlet process,
we may may appeal to Theorem to help in the calculations of and .

Let us also refer to 7(®) = (Tl(a)77'2(a), ...), which are i.i.d., distributed according to ,uél) = p(l)
for some non-random measure p") € M;. For each o € N, and I € Zy, let us define

X.(I) = Z exp (—BHN(I,T(O‘),G)) .

o€lgl™

Then, conditioning on I, these are i.i.d., random variables in «. In other words, the random

variables Tl(a), TQ(Q), ..., are all i.i.d., for different a’s. Therefore, the resulting marginal distribution

of the X, (I)’s are i.i.d (for each fixed I € Zy). Then Theorem implies that

Zfa Z exp <_BFIN(I,T(O¢)’0-)) - ZfaXa(I) el ]E[Xa(I)mU]l/mZﬁa,
a=1 a€lqN = =

14



where we indicate equality in distribution by D.

Note that the sum of the &,’s is Z which is the normalization. So, since we are taking the
logarithm,

1 ~
G (B0 Lo ) = — En o InE[Xo (D)™ )],
mN

where the inner conditional expectation is over the ug))’s and the 7(®)’s, but not I. Similarly, we
obtain

1 )
Gg\?) (ﬁ,c, Em(l)#(l) == 7N KZ_ 7TCN/2 IHE[YQ(K)m} s

where we define
Yo (K) = exp < BZ& 72,3) 1,72(,:) > .

A very easy warm-up is the limiting case m 1 1. Note that this limit is not a discrete spin structure
in .. In the Appendix we will mention a compactification. But this is not necessary, here. For
each m we have the upper bound

P(,e) S — B InELXa(D)" 1] - sz JInE[Ya (K)").

The right hand side is continuous in m. Therefore, taking the limit as m — 1, we still have the
upper bound

1 ~

pN(B,) < 5 Ene E[Xq me JInEYa (K)]. (21)

Finally, to make the bound even easier we may take u(!) € M; to be the uniform measure on [q]-

()5

In other words, the 7;°’s are i.i.d., random, uniformly distributed on [¢]. For this simplified case,

E[Y, (K)] = [exp( 525 79 e )] = {1— 1_;_;3]1(7

1 & c 1—e B
= N . WCN/Q(K)IHE[YQ(K)] = 5 In (1— . ) .
Similarly,
1] 1—eB 1]
E[ Z E €Xp 7B25(Ti(a)701¢) ’I - qN |:1 - q :| )
o€lgV i=1

1~ 1—e P
= N]EN’C IME[X,(I)|I]] = In(q) +cln (1— . ) .

Therefore, combining this with , we obtain the bound

_ B
pn(B,c) < ln(q)—i—gln (1_ 1 qe ) 7
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which re-derives the annealed upper bound in Theorem without the sum-rule correction. In
fact, one can include the correction term also in the analogue of Guerra’s upper bound in Theorem
[4:2] But we did not do this here, because we do not have any method to control the error term.

The ansatz we have taken here is not the general case of the so-called “replica symmetric”
ansatz. We will explain that in the next section: the difference is that there should be two steps,
my1 < meo and then one takes the limit m; | 0, mo T 1. Instead we just have 1 level, with m 1 1. So
this is a specialized ansatz, which one could call the “trivial replica symmetric ansatz.” Moreover,
we chose the most basic choice for ") € M;. So we could call this the “trivial, symmetric replica
symmetric ansatz.” Next we will consider a more refined upper bound (see [20} [30]). There existes
a local instability point within the replica symmetric ansatz, where another replica symmetric trial
state gives a lower bound than the trivial, symmetric replica symmetric ansatz.

6.2 Two level trees and the replica symmetric ansatz
Recall that Fr, C Fr,_1 C --- C Fi, defined in Section [5.3]is a reversed filtration.

Lemma 6.1 For L >0 and m") € Vi, and p") € My, define two sequences of random variables:
X,(IL)(I) = Xo(I) and YOEL)(K) =Y, (K) as defined in Sectz’on and for£=1,...,L —1,

1/m
XO(1) = E [X((Xerl)(I)mHl | vaU(I)] T and

«

1/meqq

Y()Ef)(K) - F {YOEEJrl)(K)me-H |-7:L—4
Then the cavity field functionals are calculated at the final step of the backward iteration

GV (8,6 Lo uwr) = Ex. {th [Xg)(I)ml |IH and

1
mlN

@) 15 m
GN (B,C,L:m(m,u(m) = m Kz;oﬂ'cN/z(K) hlE[YcSl)(K) ]

This lemma is proved just like Corollary proved in the Appendix.

The replica symmetric ansatz is obtained by taking a L = 2 level tree and then taking the limit
my 4 0, mo T 1. In order to derive the relevant limit note that if one takes m; | 0 in Lemma [6.1
then the last step of the backward iteration is

G%)(ﬂa c, Em(L)M(L)) = %EJ\LCE |:1I1 (Xél) (I)>:| and
> (22)
GRG0, Loitr ) = 55 D menp BV [0 (VO ()]
K=0

which is a standard calculation based on the fact that lim,, ;o m~! InE[X™] = E[In(X)] for random
variables X satisfying mild conditions to allow the application of the dominated convergence the-
orem. A sufficient condition is that both X™ and In(X) are integrable, which is satisfied in the
formulas above. If we let L = 2 and take the limit mo 1 1 then in addition to we have
X)) = EXa(D)|Fi Vo)) and Y V(K) = E[Ya(K)|F]. (23)

0%
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In principle, equations and determine the replica symmetric ansatz, once one makes a
choice for (2 € Ms, a non-random measure on measures.

For s € [g] and ¢ satisfying —(¢ —1)~" <t < 1, denote a measure 4
[g], such that

( ) € My, i.e., a measure on

W ({r)) = t6(r,s) + % 5(r.5)).

(

For a chosen t, let p; 2) € M5 be the measure on measures, such that

(2)({#(1)}) = é for each s € [q].

In other words, we may consider ,u,(ll) in the following way for each a € N. Let S, be chosen

uniformly at random in [g], such that all the S,’s are independent. Then let u(l) = ,u(sl) ;- This has
the right distribution.

Note that this is a very specific choice; it is not general. But it is a choice which makes the
following analysis simpler. Also note that taking the special value ¢ = 0 then ,LLS()) is uniform on

[q], not depending on s. Therefore at this point all the ,u& Vs are uniform on [q], and are therefore

non-random. From this it is apparent that taking ¢ = 0 recovers the “trivial, symmetric replica
symmetric” ansatz of the last section which led to the annealed upper bound. We now want to use
this set-up to derive the following result

Corollary 6.2 Suppose ¢ > 1. If

¢> i) L (g-1> and B> BRE(cq) - ln< Hqﬁ),

then p(8,c) < P(B,c). The quenched pressure is strictly less than the annealed pressure. Moreover,
within the replica symmetric ansatz this is due to a local instability, commonly associated to a second
order phase transition.

Proof: The proof is a corollary of Theorem The values we obtain for p(?) = ,uz(gz), written
above, are

i aW 1—e’ )
lim G’ (B,¢,L o ) =1In(g)+cln|{1———)+¢"(B,c,q,t) and
m110 My q

moTl
Jim ¢ N PO St W) ¢
Jim GV (B¢, Ly ) = —5 (1= —— ) +¢7(B.c.0.8),
maTl

where

k
gV (B,c,q,t ch Z ] ¢ "In ( Z qg! H (1 — xt(qd(mi,s) — 1))) and

s€lq] i=1

9?(B,c,q,t) = 2% ((g— 1)In(1 + 2£2) + In(1 — (¢ — Dat?)) ,
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and in both expressions

These calculations are straightforward given the definitions above, but require some steps to prove.
Therefore, we relegate the derivation to section [A:4} For now we use these formulas to finish the
argument for the proof of the present corollary.

Since ¢M and ¢ are both zero when p = 0, we note that the difference between the upper
bound obtained by the replica symmetric ansatz with p # 0 and the annealed bound is

g(l)(ﬁac7 q, t) - 9(2)(,8,C,q,t) .

If one can prove that for any ¢t € [—(¢ — 1)~1,1] this difference is strictly negative, then that
will establish an upper bound for p(3,c) which is strictly less than Z(8,¢). It suffices to do a
perturbative argument for ¢ close to zero, and establish that the leading order term is negative. It
is straightforward to Taylor expand these two functions in t. We claim that

1

9(1)(5707 q,t) = ~1 (¢ — 1)c2x4t4 + O(tﬁ) and (24)
1

9P (Be,q.t) = = (g = Dea’t' +0(%)  ast— 0. (25)

This is another calculation which we prefer to derive carefully in section [A74] From this one can
see that there is an instability of the “trivial, symmetric replica symmetric” ansatz, i.e., the leading
order term as ¢ — 0 is negative meaning that an asymmetric replica symmetric ansatz gives an
even lower trial for the minimizer, if

1 4 2

Z(q—l)[czx —’] >0 & a®>1.

But recalling the definition of x = (8, ¢) above, this means

1—e# 1
7>77
g—1+e P~

and this leads to the conditions stated as the hypothesis of the corollary. O

Note that this result shows a local instability within the replica symmetric ansatz. One can also
consider a 1-level replica symmetry breaking ansatz, which amounts to taking L = 3, and taking the
limit mq | 0 and mgs 1T 1, but keeping ms strictly between 0 and 1 as a generic point, representing
the height of the middle level.

So far we have proved annealed upper bounds for all § and ¢,

p(B,c.q) < P(B,c,q),

from Theorem We have also proved that for a certain regime we must have strict inequality:
p(B,c,q) < P(B,¢,q) when the hypotheses of Corollary are satisfied, which are conditions on
the triple (8,¢,q). Next we prove that in a certain high-temperature or low-connectivity regime,
the annealed pressurre is correct, so that one has equality rather than strict inequality.
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7 Constrained Second Moment Method

The 8 — oo limit of the g-state Potts model is the g-coloring problem. Namely, if for any edge
two vertices have the same color then the 5 — oo limit gives the entire coloring probability zero.
So, if there are any proper colorings of the full graph with g-colors, then the 8 — co limit of the
Boltzmann-Gibbs measure should be the uniform measure on the set of all proper colorings.

The problem was studied in [I] where, using a variant of the second moment method, the critical
q for each ¢ was identified within an interval. The error bound, when translated to relative errors,
are vanishingly small in the ¢ — oo limit. The physics interpretation of their results is that even at
B = oo, if ¢ is sufficiently small with ¢ fixed, the model is in the high-temperature, low-connectivity
region. Here we tackle instead the positive temperature regime and we state our result in two
separate cases.

Theorem 7.1 (1) If ¢ =2 then for B < B.(c,2) = B¥4(c,2), we have p(B,¢,q) = P(B,¢,q).
(2) If ¢ > 2 then there is a Bi(c,q) such that for B < B.(c,q), we have p(B,¢c,q) = P(B,¢,q).
Moreover we have lower bounds on By (c,q):

= —In —_ q :
Bele,q) = Pileq) = —1 (1 1+\/c(q—1)/[21n(Q)}>

A few comments are in order. Firstly, [20] it was conjectured that the critical temperature of
this model is the same as for the model with extra randomness: for every edge present, one has a
an independent, uniform random permutation 7 on [g], such that instead of the term §(o;,0;) in
the Hamiltonian one has §(o;,m(0;)). This is one of several possible extensions of the Viana-Bray
model for ¢ > 2. But for ¢ = 2 it is equivalent to the Viana-Bray model. If one takes the conjecture
in [20] for granted, then for ¢ = 2 the critical temperature would be deduced from work on the
Viana-Bray model by Guerra and Toninelli [I7]. In particular, our result (1) does confirm this
picture. Note that (.(c,2) is the correct value since we know p(8, ¢,2) # Z(8,¢,2) for 8 > B.(c,2)
by Corollary

For ¢ > 2 the second moment method introduced in [I] leads to an optimization which presum-
ably has a trivial solution for a larger region than one can prove. Therefore we do not claim that
B1(c, q) is sharp. On the other hand, solving the equation for the relationship between ¢ and ¢ in
the 8 — oo limit, we do recover the zero-temperature limit of the pressure: for a fixed ¢, we do
have p(o00, ¢, q) = P (00,¢,q) as long as ¢ < 2(q¢ — 1) In(q — 1).

7.1 Bounds from entropy positivity
Let us define the random entropy density at finite volumes as
def 1
sy(J) = Y Z wn,g(o) lnwn g(o),
o€gN
for each J € My (R). In particular, note that for finite N, if J € My ([0, 00)) admits a zero energy

ground state, then

Jim sw(8) = (o € g 5 Hx(o,) = 0})
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as one desires. In particular it is nonnegative. In fact, whether or not J admits a zero-energy
ground state, the entropy is always nonnegative because for each o € [q]V, the probability wy, s (o)
is at most 1 because this is a discrete probability measure. Therefore, —In(wy,s(0)) > 0. Also, it
is easy to see that

SpPN () = — L LWz (BT) = & 3 BH(o,00)oxpa(o) = sx(A) +px(80).

—B
N 0
p UG[Q]

So, since py(5J) is a convex function of 8, we see that

sn(BJ) = =5 PN(ﬁJ)+PN(5J) [P ([8 = 6]T) — pn(BI)] + N (8. J),

%Wa

op

for any § > 0. This leads to the following conclusion:

Corollary 7.2 For q > 1, let 8*(c,q) be the infimum of the set {8 >0 : p(B,¢,q) # P(B,¢,q)}.

Then 5 8 5
c 1—e" c e
* < i : — — < -5
B(c,q)_mf{ﬁ ln(q)+21n(l . >_ 5 q—l—l—e—ﬂ}

Since we proved in Theorem that 5*(¢,q) > 0 for all ¢ and ¢, this result implies a phase

transition, i.e., existence of a critical temperature, as long as ¢ > ¢*(q) o 2In(q)/|In(1 — ¢ 1)|.
In other words, p(S3, ¢, q) cannot be analytic beyond this point, because of the “identity theorem”
from complex analysis: it is identically equal to £(8,¢,q) for a positive interval § < (*(c,q),
and #(B,¢c,q) is analytic. Therefore, it would have to equal (0, ¢, q) identically, unless there is
a phase transition in the sense of a point of non-analyticity. It is interesting to compare this to
Corollary 6.2 If ¢ > min{c*(q), ci$$(q)}, then there is a phase transition. For ¢ = 2,3, 4 the smaller
number is ¢gS(q). But for ¢ > 5, the first transition is at ¢*(g). This means that there is a replica
symmetry breaking and/or a discontinuous phase transition.
Proof of Corollary Define the quenched entropy density to be

N(Bvc) = EN,C [EN(B'])] .

Then we know that it is still nonnegative, since it is the expectation of a pointwise nonnegative
random variable. Also, for each ¢,

™

N(B.0) < Zlpw(B = 8,¢) = px(B.0)] + P (Brc)

This means that 5
0 < 5[p(B=4,¢)=p(B,e) +p(Bc).
But if 5 < 8*(q, ¢) then p(8,¢c) = Z(B,¢) and p(8 — d,¢) = P(8 — ,¢). Since L (S, c) is analytic

in 8, we make take a derivative. In other words, we make take the limit § | 0. Therefore, we find

/BSB*(%C) = 0 < 6% (B7C)+‘@(ﬂ7c)7

which is the condition from the statement of the corollary. O
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7.2 Large deviation problem

We now return to the proof of Theorem with an elementary calculation.

Lemma 7.3 Given an R-replica configuration $r = (¢, ...,0®) € ¢V*E et Hy (SR, J) de-
note the sum of Hy (¢, J) forr=1,...,R. Then
K
1 & R 5050 o
En.c [e*ﬂHN(ER;J) [{|J] = K}} =32 Z e P21 8(0y057) ,
ij=1

for each K € Ny.

Proof: This is merely the concatenation of two elementary and well-known results: for R
independent Poisson random variables, Xi,..., Xp, with expectations Ay, ..., Ar, conditioning on
the event {X; + -+ 4+ Xp = K} results in the multinomial distribution:

Kl £ Ar b
PUX, =k, ..., X, = X1+ +Xg = kit - = :
({X1 =k, ) kr} [{X1+ - +Xpg = ki1+- - -+kr}) Hf—1k‘r!r1:[1<>\1+'“+>\R>

and the binomial (or more generally multinomial) formula. t

In order to carry out the second moment calculation, let introduce the restricted the partition
function. For N = Ngq, with A/ € N, let

[q](Nv‘Z) — {O’ (= [q}Nq : pa(s) = q_l fOf each s € [q]} .

These are the “balanced” configurations. The constrained partition function will be defined

Z(/\/,q)(J) — Z e~ BHN (0, T)

o€lq)N)

Let M([g]?) be the set of all probability measures on [g]?, and let M. ([q]?) denote the subset of those
measures such that the marginal on both factors in [g] x [¢] are uniform. Finally, let M. ([q]?, N)
denote the set of all u € M,([q]?) such that Nu({(r1,r2)}) is an integer for each (r1,72) € [q]?.
Then the following formulas immediately follow from Lemma

Exce [Zoa(8) | {19] = K}] = [[go | 0=5)

and

= N!
Ene |Z D2 H{|J =K} = E eKw(Ban)
N,c { (Nﬂ)(ﬂ ) | {1 }:| . H(Tlmz)e[q]z[NM({(T13T2>}>]!
nEAN([a]?) ’

where w(5, g, u) = In (1 —2(1—e g7+ (1 —eF)? Z(rl’r2)€[q]2 p({(r1, T2)})2)-
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Corollary 7.4 For any x > 0, and writing N = N,

Jim By [Zog (6.9) | (] = K] = 2(8.5,0)  and
K/N—k/2
lim [ Zoq (8,97 | {19 = K}] = omax  6(5.kq.p)  where
K/N—k/2

2(1 — e P)

¢(2) (Bv Ky q7p’) = S(H“) + g In|1- + (1 - 67ﬁ)2 Z “({(T17T2)})2

(r1,m2)€lq)?

Here we have used the symbol s(u) for the entropy

s =~ > u{lrur) P np{(r,72)}) -

(r1,m2)€[q]?

Proof: Both follow from Stirling’s formula, the previous formulas and Varadhan’s Lemma or
rather Laplace’s method which suffices. See for example, [10]. O

With this set-up, we will see that the condition to use the second moment method at parameters
(B,c.q) is

(2) _
max g, c ) = 22(B,¢,q) .
i A (Bq,¢. 1) (B,¢,9)

(The variable & is serving as a placeholder for ¢ at present.) In light of Theorem |3.4] we also see that
the condition is that px,(s) = ¢~ for all choices of s = (s1,...,sg) € [¢)f. This merely restates
the fact that the empirical measure must collapse on the uniform measure. If the optimizer of the
large deviation principle p € M([g]?), one does recover the result above.

We solve this problem by first analyzing the ¢ = 2 case. We note that generally speaking, for
all ¢,

6P (Be,q,p) —22(B,e.q) = — > p({(r,r2)}) Il u({(r1,72)})]
(ri,m2)€lq]?
C IB2 2 2 (26)
+ 5 In <1 + 7z ( z):e[ P[q p{(r1,m2)}) — 1] ) )

where = 2(8,q) = (1 — e ?)/(q — 1+ e 7), as was defined in Section For ¢ = 2, one may
control the second term on the right hand side by a linearization.

7.3 Ising case: ¢ =2

For ¢ = 2 by the conditions on the marginals, we may parametrize 1 € M. ([q]?) by a single number

0 =2p({(L,D}) = 2u({(2,2)}), 1-0=2u({(1,2)}) = 2u({(2,1)}).

Hence, using and the linearization inequality In(1 +t) < ¢,

¢ (B,¢,2, 1) —22(8,¢,2) < —01n(260) — (1 — ) In[2(1 — 0)] + %ch (20 —1)%.
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The right hand side is directly related to the large deviation problem for the mean field Ising/q = 2
Potts model, i.e., the Curie-Weiss model. From this it is easy to see that the stability of the
symmetric ansatz is cx? < 1.

In other words, when this condition is satisfied the right hand side has no critical point other
than @ = 1/2. So the unique maximizer of the right hand side is § = 1/2, at which point the right
hand side equals zero. So the left hand side is always bounded above by 0. This means that

(2) _
max 6,2, 1) = 22(8,¢,2),
e pmax OB e 2 ) (B,¢,2)

because the totally symmetric choice of u, corresponding here to 6§ = 1/2, does give equality. As we
will see in the next section, this condition guarantees p(8,¢,q) = (B, ¢, q), in this case for ¢ = 2.

7.4 The optimization principle

In Theorem 9 of [1], it is proved a general result which implies that, to find the maximizer of
# (B, ¢, q, 1) among all p € M;([q]?), the class of measures u on [g]? such that Erze[q] w(ri,re) =
q~! for each r; € [q], it suffices to consider a very restricted subclass. For k € {0,1,...,q} and t a
real number satifying 0 < ¢ < g, define the measure pyj ; where

q_2 s if r < k,
prt({(r1,m2)}) = <t 2, if ri >kandry =1,
g_;i'q_Q, if 1 >k and r9 > 1.

It follows the result that one may restrict the optimizer of $(2) to this subset of measures among all
p € Mi([q]?), which is a larger class than M., ([g]?) so definitely includes that optimizer. Denote
2 (B, ¢,q,k,t) = 0P (B, ¢,q, tk.¢). Then direct calculation shows

x2(q_ k) (t — 1)2) - (¢g—k) [tlnt-ﬁ- (g—1t)In (gf_i)}

q(q—1) q ’

where = 2(8,q) = (1 —e™?)/(g — 1+ e ?) is as defined before in Section Note that in
this formula k& now appears as a parameter. So, since we are just trying to optimize this quantity,
it suffices to take k real in [0,¢q]. We note that z(co,q) = 1/(¢ — 1). So, defining €(3,¢,c) and
R(B,q, k) through

@(2)(636,(]3k»t)_QgZ(ﬂyC,q) = gln (1+

z(8,q)
(00, q)

z(8,9) )20’

z(00,q)

(¢ — R(B,q,k)) = ( )2(q—k:) and  €(8,q,c) = (

we see that modulo an overall multiplier, the difference is actually equal to the zero temperature
quantity with c rescaled to € and the “real parameter” k rescaled to &

2
(m) (‘I)(Q) (670, q, k,t) — 232(ﬂ7 c, q)) — @(2)(00, Q:(ﬁ7 q,C), Q7R(67qa k),t)—Z@(oo, Q:(B, q, C), q) .

We are looking for the optimal choice of real parameters k,t € [0, ¢] in the left hand side, and the
positive multiplier [x(8,q)/x (00, q)]? does not affect the arg-max. Moreover, in Theorem 7 of [1,
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it was studied the = oo problems, which is the right hand side. In the notation of our present
context, [I] showed that as long as € < 2(¢ — 1)In(¢g — 1), the optimal choice of ¢ is ¢ = 1, which
is the symmetric point. In fact, for ¢ = 1 the value of & becomes irrelevant, because all measures
with ¢ = 1 are the same. Therefore, using results of [I], we can finish the proof of our result.

Proof of Theorem Using the condition €(3,¢,c) < 2(¢ — 1)In(q — 1), and then using x
as a place-holder for ¢ momentarily, the results above in conjunction with Corollary imply that
if kK <2(q—1)In(q — 1)[z(00,q)/x(B, q)]?, then

. 1 ~ . 1 ~
Jim = WExe [Zvg (BD? (T =K} =2 lim  — WExe [Zovg (89 [{19] = K}
K/N—r/2 K/N—k/2

and the right hand side equals 22(3, ¢, ). By Holder’s inequality and convexity generally we know
that E[ln X] > 2InE[X] — 3 InE[X?], for any nonnegative random variable X. Therefore,

Im < Ewe [Zocg (39| (1] = K}] = 2(8.5.0).

Concentration of measure may be established for |J| in the measure Py .. Namely |J|/N, the
variable we have called k/2 up to now, concentrates around ¢/2. Moreover, one can show that
the conditional expectation is Lipschitz as a function of x by general principles. Therefore, this
establishes the lower bound in the limit as N — oo along integer multiples of N, p(53,¢,q) >
P(B,¢,q). In other words, since we know the limit of py (5, ¢, q) exists as N — oo, it does not
matter what subsequence one takes to obtain that limit. This lower bound matches the upper
bound so it gives the identity.

For ¢ = 2 the argument is the same except that we use the analysis of Subsection O

A Appendix

A.1 Interpolation Results

The proofs in this subsection are all based on Lemma As a first step, we note that by using
the series expansion in the radius of convergence of In(1 — z),

d > (1—e" 5 de;;
ey = -3 ot > b (Tlselesefen)
R=0 s€q)R i,5=1 N,B,c(t)

Proof of Corollary E: Let N = N; + N,. Let us define ¢ and ¢® such that pN (5, c(o))
and py (B, cM)) are the left- and right-hand-sides of @ respectively:

N N
cl(-?) = ¢, foralli,j, and cl(-jl-) = ElA( i)14(J )+E13( i)1p(4),

where denote two sets, A = {1,...,N1}, B = {N; +1,...,N}. We remind the reader of the
notation introduced in . Let us extend this as follows

pgR(s) A ZH(; (r), s;) and pER - N ZH(; (") s

i€Ar=1 i€Br=1
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Then using (27) for c(t) = (1 —t)c® 4 tc),

%pN(B’C(t)) = _Z%V; i U _;_ﬂ)R > << (% (5) _pgR(s>]2>>N,,6’,c(t) '

R=0 s€lq)”

This has a definite sign, which implies py (8, ) > pn (3, cV). O

Proof of Lemma To recapitulate Fekete’s argument, for any M < N,

M|N/M| N — M|N/M| M|N/M| 1
N = TZCMJr TN IN-M|N/M| > N M + N kgl]\?l—lkxk’

which shows that liminfy_,.c zx > zas for each M. Hence liminfy_ oo xn > SUPps_,o0 s, and
the supremum is no less than the limit superior, limsup,,_,., . Of course the opposite inequality
limsup,,;_, o, zar > liminfy o v, holds by definition. So Fekete’s argument is complete.

Let z, = supy xn. Defining Ny g = NK,

Ny —M M 1 & My N+ N Moy Nk
Pt M v = o > g 30 (P g = M L)

)

where we define My i = M + N(k — 1). The left hand side converges to z, as K — oo, while
the right hand side is uniformly bounded below by

. M + N M’
i T e e )

So taking the limit M — oo of the last expression, and then taking the limit superior as N — oo,

> 1 lim inf M+ N M
Ty im sup lim in T ——=x .
S vl S A R Ve

But for any M, (X N N enreN— % ) > xN, by superadditivity again, and taking the limit superior
of this gives .. So x, is not only an upper bound for the right hand side of the equation displayed
above, it is a lower bound, too. O

Proof of Theorem [3.4k Using and the definition of px,,(s) from (11f), we can rewrite

d (1—e
dtpN Bv - 75 Z ]\?QR Z <<p21?(s)2> N,B,ct *

s€[q]®

Therefore, using the fact that Y- 11r pxx(s) = 1 for every Sg € [q]V*F, we see that

i(ﬂz(ﬁ,C)—pw(@C)):;g 53 > (ba =T,

s€[q]F s€lq

Using the fact that py(8,0) = £(5,0) = In(g), and integrating, this proves the result. O

Proof of Corollary Apply to c(t) = (1—t)c™ +tc?, defined for ¢ € [0,1], to obtain

the bound ’%pN B,c(t ))’ < 2‘% Nj 1 c(z) - cgjl)’, and then integrate. The result for numbers
follows by taking ¢! and ¢(® such that c( ) = = ¢y and c( ) = = ¢y for all ¢, j. O
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A.2 Extended variational principle bounds

The proofs in this section are more involved than the previous section. In order to prove bounds
and the extended variational principle, as stated, we first generalize the definition of random spin
structure and cavity field functionals. The definition we give is based on the sampling-resampling
definition Kingman eventually gave for his random partition structures [I8, [19]. Recall from Section
that [¢]" denotes the set of all infinite spin configurations 7 = (71,72, ...) with each 7,, € [q]. Let
[¢]"*N the set of all infinite sequences of replicas 7 = (71,73 ... with each 7(") € [¢]N. With
the product topology this is compact and metrizable. Let .Z™* denote the set of all Borel probability
measures on [¢]"*N. We will denote such measures as £ € .#* in order to distinguish them from
measures L € #. Let * denote the set of all measures £ € .#™* satisfying the following two
exchangeability conditions:

[q]NxN

(i) For any measurable set A C and any m € So,

SHUT : (WomrPon,...)e A}) = £(4).

(ii) With the same setup, ({7 : (r(*() 72 " ) e A}) = £(A).

The R-replica cavity field functions are

Gg\lf,)R(ﬂ7cy 2) = /[] NNﬁc lnz Z exp <_BﬁN(I,T(T)7J)) dE(T) and
quN

UG[Q]N

(B, 2) /]NXN Z WCN/2 <Z T &XP < ﬁZ(S Tzk 1,7'2k >> de(T).

Lemma A.1 For any B,c > 0, N € N and £ € ¥, the following limits exist and determine
continuous functions on S*:

d

GV (B.c,9)  Jim GUp(B,e,8)  and  GP(B,6,) = lim GPR(8,¢9).

We do not use the continuity in the sequel. In order to set up a general proof for both, let us define

K
ggl)(T) = Z exp (—B?IN(I, T, 0)) and gg)(T) = exp (—625(7'%_1,7'%)> .
k=1

o€lgl™

Note that qu*EIII < ggl) < qN and e PK < gg) <1.

Proof: For simplicity, suppose that g : [¢]Y — (0,00) is a continuous, positive function, with
bounds 0 < m < g < M < oo. Given a finite set 4 C N, let ga(T) = >, o4 A7 g(r™).
Define y4(7) = Inga(T). This is continuous on [¢]"*N for each R € N. Define ['g(£) =
f[q]NxN Ya1,...r}(T) dL€(T), which is continuous on M*. We want to show that, when restricted
to " these functions converge pointwise to a continuous limit. From this we will be able to prove
the desired result.
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Let A(R) = {1,..., R} and let A(R,7) = A(R) \ {r}, for r = 1,..., R. Then, leaving out the
explicit dependence on the argument

_g.AR'r
VA(R)—* Z VA(RT)ZR/ Z (Bor) de .

reACR) (1- 9 gA(R) —09A(R,r)

Note that the left hand side is nonnegative by Jensen’s inequality. Direct inspection shows the
integrand in the right hand side is zero when # = 0. Therefore, using integrating by parts, the right
hand side equals

. ER /1 /91 ( JAR) — JA(R) >2 i) do, < — ER (g g’
2 < A(R) ~ YA(R,
R~ Jo \Jo \(=0)gar) —09ar.r P oamip & VAW ()

But a simple calculation shows that

2 1
Z gA(R)_g.ARr)) = W

_;§j(wfm>—gdwx701 < G

The key point is that this is summable, summing over R € {2,3,...}. Also, by exchangeability,
taking expectations shows that this gives

0 < Tn(€) - Tra(e) < n =’

<lr R—1 = AR-1)p
Since the uniform limit of continuous functions is continuous this shows that I' = limp_,o 'r is
continuous.

Now for the lemma as stated there is the technicality that the functions depend on parameters,
|I| and K, and that the ratio M /m diverges as these parameters do. On the other hand, the quantity
on the right hand side above is integrable against the measures for these random parameters. More
specifically, one has integrability of (el — 1)2 and (e’ — 1)? against the appropriate Poisson
measures. So the dominated convergence theorem shows that the result still holds. O

Given L € .7, one may define £, € .#* as follows. Suppose that (&, T) is distributed according
to L. Let tq,t2,... be ii.d., N-valued random variable distributed according to &. Then we let £,
be the marginal distribution of (7(t1) 7(x2) ).

Corollary A.2 For any L € .7, é%)(ﬁ,c, Lr) = GS\? (B,¢,L) fori=1,2.

Proof: If one fixes I and K, then this follows from the weak law of large numbers for ty,to,.. .,
and continuity of the functions involved. This establishes convergence, pointwise for each finite |I|
and K. For random I and K one can use the dominated convergence theorem, since the functions
satisfy exponential bounds with respect to |I| and K, and these random variables are Poissonian.
|

Proof of Theorem In view of Corollary it suffices to prove

N(B.)+ GVR(B.c,8) < GV p(B.c 0,
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for each £ € .* and each R € N. _
In order to prove this we make yet another definition. For M € N finite, let us define I to

be a sequence ((I}, Ik))u_| where I is still 7y distributed, and conditional on that (Ij,...,Ij)
and (I,..., I\QI|) are indepedent, with the first being uniform on {1,..., N} and the second being

uniform on {1,...,M}. Then we define HS)(T,U, T) = lklz‘l (5(0%,7'12). We let ég\l,,)R,M(ﬁ,c, £)
be the result of changing GN r.v (B¢, £) by replacing Hy (I, 0, () by fi:](\})(I, o, 7). We notice
that if T happens to be such that no two numbers in (I%,... ,1‘2”) are the same, then the two

definitions are equal in distribution because of exchangeability of £. But conditional on [I|, this
happens with probability (1 — M=)l which implies

; ~(1) A
1\411—r>nooGN’R’M(ﬁ’c’2) - GN7R(ﬁ7C?2)7

along with integrability and the dominated convergence theorem.

Similarly, let K = (K}, K?))Lg be a sequence where | K| is Ten /2 distributed and conditional
on that (Ki,..., \%I) and (K%,... ’KI%IZI) are all independent and uniform on {1,...,M}. We
let H(z) K,r) = ZlK‘ d(Tg1,T2), and use this to replace Zfil 0(T2i—1,72i) in the definition of

G%’R(ﬁ,c, £). We call the new version é%?R’M(ﬁ,c, £). Then if none of the K}!’s and K?’s are

repeated, there is no real difference from before, and this happens with probability (1 — M ’1)2&?'.
This shows
J\}l_rfloo GN ru (B¢, L) = GN R(IB7C £),
Finally, we claim that

P (B ) + G rar(B,0:£) < Gpar(Bres L), (28)
by arguments from Sect1on l Indeed conmdermg (o1, . oN, T1,...,Ta) as a spin configuration,
we (B,e) — A lng], for i = 1,2,
where

- MAN vy 0 and @ MEN 0 (¢/2)1n,m
N 0 C]lM,M N (C/2)]lM’N 0 ’

where 1,, ,, is the m X n matrix with all entries equal to 1. In particular the difference is a positive
multiple of the outer product of the vector (1,...,1,—1,...,—1) with the first N entries equal to
1 and the last M equal to —1. So following the proof of Corollary one can deduce . O

Proof of Lemma .: We will prove the formula for G )(5, ¢, LN ), first. Let IM 1 IM 2

be chosen independently, and uniformly from {1,..., M}. Using K and I M,15 I 2, ..., we define

. . ~(M,N)
the random coupling matrix J € Ms(Np) such that

j(M M - =#{k<K: TM,Zk—l =1, TM,2k =j}.

i,
Then these variables are distributed as independent Poisson random variables all with means

-~ ~(M,N
¢N/(2M?). Moreover, since K and Ipr1,Ipa2,... are independent of J( ), this means that
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~(M,N) ~(M,N) . . ~(M,N) ~(M,N)
J and J are independent. Since J has the distribution Py z,, , the sum J +
~(M,N N . .

J ( ) has the distribution Py z,, v+ (en/ar)- This justifies the desired equation. More precisely,

M
q

1 ~
Gg\z,?c (B, Lm.N) = NIE anwﬁ MO .~ (o exp( BZ(S( O rap s a),UIM,Qk(a))> ,

.. ~(M,N) ~ ~ . =(M,N) . .
where the expectation is over J ,Kand Iy, Iy, ... But using J this may be rewritten

as

M
GS\Qf?C (ﬂ,ﬁM,N) = %]E lnqz:wﬂ,Mj(M,N) (&(a)) exp | =8 Z (M, N)5( () ~(0¢))
a=1

3,7=1

~(M,N)

Keeping track of the definition of o(®) and also of Hy;(-,J ), we have

1 ~(M,N)
GE\QZ?C (ﬁa‘CM,N) - NE In Z OJB}M’.}(ILI,N) (0’) exp (—ﬁH]\/[ <0’ J ))

o€lq]M

Finally, using the definition of the Boltzmann-Gibbs measure, this can be rewritten as

1 1 ~(M,N)  ~(M,N)
GV (8. Lar) = - E |l Y o (ﬁHM (o A ))
o€qM ZN (67 )

1 T (M N)  ~(M,N) (M N)
= N]E IHZN <5, +J )—IHZN (ﬁ, >:| .

\
\
&

. . e ~(M,N) ~(M,N) = ~(M,N)
Keeping track of the marginal distributions of J and J +J in the measure for E

does give equation for Gg\z{) (B,¢, LpN)-

The derivation of the equation for G%)(ﬁ, ¢, Lar,n) s similar. We leave this as an exercise for
the reader. O

A.3 Poisson-Dirichlet structures

Proof of Lemma Using equation we immediately have
° o \ d
_ P J= _ _ A L —m
E [oxp < A ; x du(x)ﬂ exp ( /0 (1 e ) d:c( x )dx)
exp | — /oo =" a (— _’\Ip) dz
0 dx ’

using integration by parts and the fact that (1 — e*”p) converges to zero as x — 0 faster than
x~™ diverges, as long as p > m for the boundary term at 0. (The boundary term at co follows just
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because =™ converges to zero there.) Rewriting y = AzP, so that =™ = \/Py=m/P gives the

result. O

Proof of Theorem This follows from the conjunction of two basic facts about general
Poisson processes, both of which follow easily from the moment generating functional identity
definition of Poisson processes:

o If {£1,&,,...} is a Poisson process with intensity A(d§) on (0,00), and (A1, Ag,...) are ii.d.,
p-distributed points in (0, c0) independent of {&1, &2, ... } then the pairs {(£1, A1), (§2,A2), ... }
are a Poisson process on the quadrant (0, c0)? with intensity measure A(d¢xd\) = A(d€)dp(N).

o If {(&1, A1), (€2, X2),... } is a Poisson process on (0,00)? with intensity measure A(d¢ x d)),
and if @ : (0,00)* — (0,00)? is a diffeomorphism, then {®(&1, A1), ®(£2, A2), ... } is a Poisson
process with intensity measure Ag defined as Ag(A) = [14(®(E, A)) A(d€ x dN).

Taking the function ®(£, A) = (A€, A) we see that, for the case A = A,,,

haa) = [ N ( / T L0EN I (-67) d«s) ) = | T ( / T La@ ) () dw) dp(N).

using equation . So Ag(dE x d)\) = A" A (d€)dp()). Note that the measure c=™A™dp(N) is a
probability measure. So taking the marginal of Ag just on the first coordinate gives ¢™A,,(d§) =
A (d(ct€)), which equals the change of measure of A, due to the mapping & + c£. O

__ Proof of Corollary This is proved by induction, conditioning on the c-algebra of
& (D) (a(Lfl)). More precisely, first construct the un-normalized Poisson process associated to
[L—1

this normalized random partition structure, and then use Theorem Note that to work it is
essential that m; < mg < --- < myp, since, in the proof of Lemma above, one does need this
condition in order to have finite fractional moments. O

A.4 Replica Symmetry Breaking results

In this section we use an abbreviated notation in order to reduce the number of symbols needed. We
hope that the reader may follow the calculation, inferring the translation needed from the context.

To calculate GS\Q,), the easier of the two parts of the cavity field functional, we condition on {£, }
and on {7} }. Since the 73’s and X,’s are i.i.d., we do not condition on them. Then we note that

1
P(Taok-1 = Ta2k [ {Ta, 1)) = P(X1 = Xo = 1)L{7) op 1 =74, ok} + 1 - P(X1 = X5 =1)] - e
This implies that

1 1 _ p—m2p
E [e*mzw(%,%—l,‘fmzk) | {7-01( }} — p26*m2ﬁ5(%1,2k_177@1,mc) +(1 *pQ) (1 _loe™ > )
' q

FOI'
—B6(Ta,2k-1, a,
)\ = e B ( ,2k—1> Zk) ,
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we have that 4
{)‘aga} = {/\0€a} )

where

1/m
)\0 ) |:]E |:e*m255(7'a,2k—1»7a,2k) | {Tolll}i| VYL1/TI’L2:| 1 .

So we get in general

V(1 a—mafB)\ /M .2 ma/ma
Iny = 11n[<1—1> (1—(1 p)i-e )> +1<1—[p2+1p} (1—e—m2ﬂ)) 1
my q q q q

Because the spin fields are independent for different values of k, the effect of the L is just to multiply
this final answer. Therefore, taking the expectation of that, and dividing by N gives

o0 - g ul(1- 1) (- L A5 e

mi q

To get the replica symmetric ansatz, we use the 2-level RPC and take the limits msy T 1 and
my J 0. Taking ms 1 1, gives

1 1 1-p2)(1—e P\ 1 1—p? m
o= -3 (- B )]
my q q q q
Then taking m; | 0 gives

Ao = (1—(1]) In <1— (1_792)21_6_6)) +% In (1— [p2+ 1_617’2} (1—6—5)> .

Thus the replica symmetric value of the first term is

Gy =3 <1l> In (1 (1_p2)(1_6ﬁ)) +5-In (1 [p2+1;p2] (1eﬂ)> . (29)

q q q

The more complicated term is Gg\l,). Conditioning on the spins at the first level {71}, and all
the K (i) values, we get (using a notation which is clear from the context)

ma2

N q K@)

1 i w7 - Ti,Ti

BT K () {7 obas) = [[EXH | SO [er#oemn] )]
i=1 o;i=1 k=1

where the TZ%k, are all i.i.d., uniform on {1,...,¢}, and
Tie = XipTig + (1= Xi )7l -

The X;}’s are i.i.d., Bernoulli-p random variables. Since the formulas are identically distributed
for different i’s and since there are N such ’s (canceling the division by N), we get the formula
1 4 K mgq m1/ma
G = —grpEint |ROGHTD [ —ﬁé(om)}
R >I 7

o=1k=1
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where once again £ is a Poisson random variable with mean ¢, and now {7} and {r?} are all i.i.d.,
uniform random variables on {1,...,q}, and {X;} are all i.i.d., Bernoulli random variables with
mean p, and 7, = X7l + (1 — Xj)77 for each k.

We now take mso 1 1 and my | 0. Taking mso 1 1 gives

K

q m
Bk} {mi} [Z H [e—ﬁé(wk)w ] 7

o=1k=1

LEH InE{m}
my

which can be rewritten

LEN InE{m}
mi

q & my
<Z H EXk,T,f [eﬁé(a,rk)}> ] )

o=1k=1

But

1—¢ B
E¥urt [e=aem)] = peierd) (1) (1 _ qe ) .

Using this and taking the limit m; | 0 gives

q K —
1 1 1—e B
GO = gl [111 (Z 11 <p655<a,rk) +(1-p) <1 _ ¢ >>>] .
o=1k=1

q

Let us now rexivrite this in a manner which is appropriate for taking derivatives at p = 0. We
can write e #(@7k) =1 — (1 —e7#)§(0, 7}). Since the average value of 6(o,7}) is 1/q, we may also
incorporate that:

1—e B
e BT =1 - St (1- e )00 Th) — g7,
q

Then we may rewrite EXkmi [6_55(0’7—’“)} as

(1- 1‘”) (1 Yo — a7,

q

The formula for Gg\l,) is simpler if we introduce a new variable, z = (1 —e~#)/(¢ —e~?). Therefore,
we obtain

1—¢ B
Gg\lr) =Ing+cln (1 — c ) + Ex i) [ln]E‘7
q

IT (1 =px(gd(o, 7)) - 1))H

k=1

1—e—B
q—(1—e=F)
(30)
Now we want to consider this formula as a function of p perturbatively near 0. We say that the
p =0 RS ansatz is “stable to RS perturbations” if it is a local minimizer of the extended variational

principle in the set of RS ansatze.
Starting from the simpler term, , we rewrite Gg\z,) as

gln (1— 1_6_[3) +C(q2; D (1+1’2(1_6_6)> PR (1_ (q—l)(l—e‘ﬂ)p2> .

q q—(1—eF) 2q q—(1—eF)

r=
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Using # = (1 — e #)/(q — e ) this is simpler:

1—¢e B
GY = Shn(1-——"— )+ [(¢— )l +p’x) + (1 - (g — 1)pa)] - (3
9 q 2(] x:%
g—(1—e=F)

This is an even function of p, so only even powers will appear. Taylor expansion shows that

(¢—1)In(1 4 p*z) +In(1 — (¢ — 1)p’z) = —% q(q — 1)p*a?

Therefore,
c 1—e#B c(q —1)pta?
GP =" (1 - ) - +0(p°) .
2 q 4 e
This gives
dt @) 2
TSGR = —6elg— e ‘ . (32)
P p=0 R

Now turning to the more difficult term, let us start with (30). Let us write f (o, 7) = (¢d(c, 7)—1).
Then we have

1—e b . :
GY = Ing+cln (1_ c ) RS [lnlE" [H (hpr(o*mi))H

q k=1

(33)

_ 1—e—B
=1 h)

As usual, we may interpret the function

H 1 —pzf UTk))]

as a cumulant generating function. But the random variable is multi-linear in p. Therefore, when
expanding in p, we have to take account of these terms. Also, notice that E7[f (o, 7)] = E"[f(0,7)] =
0 as long as the expectations are with respect to the uniform measure. Because of this, various
terms vanish either in the expectation over E? or in the expectation over E{:}.

For instance, using the fact that E°[f(o,7)] = 0, we see that the first derivative in p equals
0. Moreover, since each factor is linear in p, in taking multiple derivatives (of a single copy of the
product) means we cannot repeat the derivative of any factor. So we obtain

H 1_pr g, Tk ] = .1‘2 Z Eo[f(U’le)f(U’Tli)]'

7,k=1
i#k

7E‘7

But then taking the expectation over E{m} gives 0 because since j # k, we have

ECHE[f(0, 7))/ (0.7)] = B [E7 [[(o.7)] - B [f(e.7)]] = 0.
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Continuing, we may easily see that the third derivative is again 0 since E?[f(o,7)] = 0. Then, the
next simplest term arises from
d4

& go
dpt

1 (l—p:cf(omi))] ot S B o) o) Fo ) o7
=1 i
2

K
- 3334 Z E? [f(()', T]-l)f((f, T]i)]
Jok=1
ik
We can rewrite this by expanding the square of the sum, and using replicated spin variables for
products of expectations:
d* . 1 4 - 1 1 1 1
@EU H (1 —pxf(o, Tk)) =z Z E7[f (o, Tj ) f(o,7) f(o,70) f(o,70)]
k=1 3ok, 0,m=1
klAEm
K K
=30t Y D BT [f(o, ) o, m) f ol ) o )]
j,k=12,m=1
J#k  LFEm
Any distinct terms for j, k, £, m vanish in the expectation over E{7:}. Therefore all must be paired.
That means that the first summand vanishes entirely. In the second summand, we require (¢,m) =
(j, k) or (¢,m) = (k, j). These two possibilities give an extra factor of 2. Hence, we obtain

d4 ko {T} - a ?

at Gl = =6 B ST (B[ f(o, 7)) Flon 7))

D =0 i g 1=e=B
7k cee

A calculation gives

— if 71 # 7}
E7[f (o, le)f(o'v Tli)] = {(ql_ 1) 1f 7_7'1 i Tli,

Using the i.i.d., uniform distribution on {7}} gives P{7} = 7/} = 1/q. Therefore,
EVE?|f(0,7))f (0] = 0,
as we claimed before. But now we also have

1 if le # Th,
(¢—1)* if 7} =7,

(E°[f(o,T]) flonh)])” = {

which gives
BV (€S (0, 7)) S )] = a1

Therefore, also using the fact that E*[#{(j, k) € {1,...,x}? : j # k}] equals E*[k(k — 1)] = ¢?, we

obtain .
d”

i O = —6c*(q - 1)$4’

(34)

1—e—B

TG/

p=0
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