
Antiferromagnetic Potts model
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February 1, 2013

Abstract

We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By
identifying a suitable interpolation structure and an extended variational principle, together
with a positive temperature second-moment analisys we prove the existence of a phase transition
at a positive critical temperature. Upper and lower bounds on the temperature critical value
are obtained from the stability analysis of the replica symmetric solution (recovered in the
framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.
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1 Introduction and main results

In this paper we prove some rigorous results on the antiferromagnetic q-Potts model on the Pois-
sonian Erdős-Rényi random graph of parameter c. This model is related to diluted spin glasses of
disordered statistical mechanics on one side and to the the graph coloring combinatorial problem on
the other. Since the Erdős-Rényi random graph has a locally tree-like structure and large loops, the
statistical mechanics model with antiferromagnetic interactions has been reported to display some
spin glass behavior in the physics literature [29]. In particular it has been argued that the one-step
replica symmetry breaking solution does not get improved by a higher number of steps [20]. On
the other hand it is well known that antiferromagnetic Potts models on graphs are related, at zero
temperature, to the graph coloring problem. This consists in placing colors on the graph vertices in
such a way that two of them connected by an edge have different color. Some mathematical analy-
sis, from the combinatorial perspective, has been obtained in [1] for the graph coloring problem. In
particular it was proved there that for a given number of colors there exists a critical connectivity
value which separates the colorable from the un-colorable phases. The connection among the two
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approaches has emerged in recent times also within the algorithmic setting. A method has been
developed to study graph colorability [8] based on ideas from the physics of disordered systems,
in particular on the replica symmetry breaking scheme introduced within the mean field theory of
spin glasses [21].

In this paper we obtain a full control of a region in the high temperature phase of the model:
computing the free energy and identifying a phase transition at a critical βcrit(c, q). Our main
result is the following.

Theorem 1.1 For a given number of colors q > 1 and a Poissonian Erdős-Rényi random graph of
parameter c > 0, define the ”annealed” pressure

P(β, c) = ln q +
c

2
ln

(
1− 1− e−β

q

)
. (1)

Define moreover

βloc
RS(c, q) =


∞ for c ≤ clocRS(q),

− ln

(
1− q

1 +
√
c

)
otherwise,

βent(c, q) =


∞ for c ≤ cent(q),

inf

{
β : ln(q) +

c

2
ln

(
1− 1− e−β

q

)
≤ −βc

2
· e−β

q − 1 + e−β

}
otherwise,

β1(c, q) =



βloc
RS(c, 2) for q = 2,

∞ for q > 2 and c ≤ c1(q),

− ln

1− q

1 +
√

c(q−1)
2 ln(q−1)

 otherwise,

where

clocRS(q) := (q − 1)2 , cent(q) :=
2 ln(q)

| ln(1− q−1)|
and c1(q) := 2(q − 1) ln(q − 1) .

There is no phase transition at any finite temperature if c < c1(q). For c > min{clocRS(q), cent(q)},
there exist a phase transition at the critical value βcrit(c, q) with

β1(c, q) ≤ βcrit(c, q) ≤ min{βlocRS(c, q), βent(c, q)}.

The quenched pressure is equal to P(β, c) for β ≤ β1(c, q) and it is different (stricly less) for
β > min{βlocRS(c, q), βent(c, q)}.

The proof of the theorem will be a combination of different results obtained in the following
sections. The method we follow combines ideas developed within the rigorous theory of spin glasses
[3] with second moment bounds [1]. A full treatment of the ferromagnetic Ising case has been
given in [9] for locally tree-like random graphs and extended in [12]. The techniques used there
are heavily based on the use of ferromagnetic Griffiths-Kelly-Sherman and Griffiths-Hurst-Sherman
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inequalities and do not apply to our case. For the antiferromagnetic model we introduce here an
interpolation scheme and prove its monotonicity (see [6] for an alternative interpolation scheme in
the Bernoulli case).

The paper is organized as follows. The model is defined in section 2 and the interpolation is
introduced in section 3. The extended variational principle that applies to our case is formulated
and studied in section 4. Derrida-Ruelle like trial states are described in section 5 and then used in
section 6 to obtain replica symmetry breaking bounds. Section 7 develops the constrained second
moment computation, along the lines of the previous zero-temperature computations. Details of the
proofs and explicit computations are included in the Appendices and make the paper self-contained.

2 The model

We start by considering the general set-up for the q-state Potts model for q ∈ N. We use the
notation from combinatorics

[q] = {1, 2, . . . , q} .

We consider a set of N vertices, such that for each i = 1, . . . , N , there is a spin variable σi ∈ [q].
Given a subset S ⊆ R let MN (S) be the set of all N ×N matrices with entries in S. The q-state
Potts Hamiltonian is

HN : [q]N ×MN (R)→ R , HN (σ,J) =

N∑
i,j=1

Jijδ(σi, σj) ,

where δ(r, s) is the Kronecker delta for r, s ∈ [q]: 1 if r = s and 0 otherwise.
For a general J ∈MN (R), we may define the usual thermodynamic quantities.

partition function: ZN (J) =
∑

σ∈[q]N

e−HN (σ,J) , (2)

Boltzmann-Gibbs measure: σ ∈ [q]N 7→ ωN,J (σ) =
e−HN (σ,J)

ZN (J)
, (3)

Boltzmann-Gibbs expectation: (f : [q]N → R) 7→ 〈f〉N,J =
∑

σ∈[q]N

f(σ)ωN,J (σ) . (4)

For now, we have absorbed the inverse temperature β into the coupling matrix J . But later we will
make it explicit.

For a general R ∈ N, and a function of R replicas, F : ([q]N )R → R, we use the same notation

〈F 〉N,J =
∑

σ(1),...,σ(R)∈[q]N

F (σ(1), . . . , σ(R))

R∏
r=1

ωN,J (σ(r)) .

Often we gather all R replicas as
ΣR = (σ(1), . . . , σ(R)) .

The set of all ΣR’s will be denoted [q]N×R = {(σ(1), . . . , σ(R)) : σ(1), . . . , σ(R) ∈ [q]N}.
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The finite-volume approximation to the pressure is

pN (J) =
1

N
lnZN (J) .

If J is random then pN (J) is, too. But we will more frequently use a different notation for the
quenched pressure, where we take the expectation of pN (J) over the disorder distribution of J .

2.1 The disorder distribution

Let N0 denote {0, 1, 2, . . . }. For each λ ≥ 0, let πλ : N0 → [0, 1] denote the Poisson-λ mass function

πλ(0) = e−λ , πλ(k) = e−λ
λk

k!
for k ∈ {1, 2, . . . }. (5)

A key feature for the interpolation method of Franz and Leone [13] for Poisson couplings, general-
izing the Guerra-Toninelli interpolation for Gaussians can be called Poisson summation by parts:

d

dλ
πλ(k) = πλ(k − 1)− πλ(k) ⇒ d

dλ
Eπλ [f ] = Eπλ [f(·+ 1)− f(·)] . (6)

Given c ∈MN ([0,∞)), define the measure PN,c on MN (N0) as

PN,c(A) =
∑

J∈MN (N0)

1A(J)

N∏
i,j=1

πcij/(2N)(Jij) .

Let EN,c denote the expectation with respect to the probability measure PN,c. It is frequently
useful to use the notation 〈〈

· · ·
〉〉
N,β,c

= EN,c
[〈
· · ·
〉
N,βJ

]
. (7)

Given β ∈ [0,∞) and c ∈MN ([0,∞)), let us define the quenched pressure

pN (β, c) = EN,c [pN (βJ)] . (8)

Given c ∈ [0,∞), let PN,c denote the measure PN,c for the matrix c such that cij = c for all
i, j ∈ {1, . . . , N}, and similarly let EN,c and pN (β, c) denote EN,c and pN (β, c) for this choice of c.
Similarly, let 〈〈

· · ·
〉〉
N,β,c

denote
〈〈
· · ·
〉〉
N,β,c

for this special choice of c. Occasionally it is necessary to explicitly denote the

dependence of pN (β, c) on q in which case we write pN (β, c, q).

3 Interpolation

In the present model we use interpolation to prove existence of the thermodynamic limit of the
quenched pressure (see [6] for the antiferomagnetic model with Bernoulli dilution, not the Poissonian
case we consider here). The method of interpolation is a well-known tool for disordered mean-field
models of statistical mechanics (see [13] for the diluted spin-glass and [15] for the Sherrington-
Kirkpatrcik model).
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Lemma 3.1 Given any differentiable curve t 7→ c(t) in MN ([0,∞)),

d

dt
pN (β, c(t)) =

1

2N2

N∑
i,j=1

dcij
dt

EN,c(t)
[
ln
(

1−
(
1− e−β

)
〈δ(σi, σj)〉N,βJ

)]
.

Proof: This follows from a well-known calculation which we include for the benefit of the reader.
By (6) and the chain rule,

d

dt
EN,c(t)[pN (βJ)] =

1

2N

N∑
i,j=1

dcij
dt

EN,c(t)
[
pN (βJ)

∣∣∣
Jij→Jij+1

− pN (βJ)

]
,

But since pN (βJ) = N−1 lnZN (βJ),

pN (βJ)
∣∣∣
Jij→Jij+1

− pN (βJ) =
1

N
ln

ZN (βJ)
∣∣∣
Jij→Jij+1

ZN (βJ)

 =
1

N
ln
〈
e−βδ(σi,σj)

〉
N,βJ

.

Using the fact that e−βδ(σi,σj) = 1−
(
1− e−β

)
δ(σi, σj), this gives the desired result. �

The first corollary is existence of the thermodynamic limit.

Corollary 3.2 For β, c ≥ 0, and any N1, N2 ∈ N,

pN1+N2
(β, c) ≥ N1

N1 +N2
pN1

(β, c) +
N2

N1 +N2
pN2

(β, c) . (9)

This states that the sequence (pN (β, c))N∈N is superadditive. We will prove this in Section A.1.
Let us now state an inequality for superadditive sequences.

Lemma 3.3 If (xN )N∈N satisfies (M +N)xM+N ≥MxM +NxN for all M,N ∈ N, then

lim inf
N→∞

xN = lim sup
N→∞

xN = sup
N∈N

xN = lim sup
N→∞

lim inf
M→∞

(M +N)xM+N −MxM
N

.

The first part of this lemma is a result due to Fekete. The last equality follows from an argument
in [3]. It will be useful later. We will review the proof in Section A.1.

Let us now introduce an important function, which is called the annealed pressure

P(β, c) = ln q +
c

2
ln

(
1− 1− e−β

q

)
. (10)

We call it annealed with a slightly different meaning than the spin glass case, as it will be clear in
the following. This function provides an upper bound for the quenched pressure pN (β, c) for every
N ∈ N, as we will show next. In order to state the precise result, recall that ΣR = (σ(1), . . . , σ(R)) ∈
[q]N×R is a notation gathering R replicas. Given ΣR, let us define the R-replica empirical measure
on [q]R:

ρΣR(s) =
1

N

N∑
i=1

R∏
r=1

δ(σ
(r)
i , sr) for s = (s1, . . . , sR) ∈ [q]R . (11)
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Theorem 3.4 For every β, c ≥ 0,

P(β, c)− pN (β, c) =
1

2

∞∑
R=0

(1− e−β)R

R

∑
s∈[q]R

∫ c

0

〈〈(
ρΣR(s)− q−R

)2〉〉
Nβ,c′

dc′ . (12)

As a particular implication, note that pN (β, c) ≤P(β, c) for all N . Along with Corollary 3.2 and
Lemma 3.3, this implies that the thermodynamic pressure exists as a finite limit

p(β, c)
def
:= lim

N→∞
pN (β, c) ,

and it satisfies p(β, c) ≤P(β, c).

Remark 3.5 When it is necessary to explicitly denote the dependence on q we will write p(β, c, q)
and P(β, c, q).

The explicit formula for P(β, c) − p(β, c) is relevant when trying to determine the annealed
region: the parameter space for (β, c) ∈ [0,∞)2 such that the inequality is saturated, p(β, c) =
P(β, c).

The final application of interpolation is the analogue of Guerra replica symmetry breaking
bounds [14]. We introduce this in the next section in order to give the full definition of the random
spin structure which aids in understanding those inequalities. See [23], [7], [28] [5] for similar results.
We include proofs for the benefit of the reader in the Appendix.

Before ending this section let us note another elementary corollary which is useful in the next
section.

Corollary 3.6 Suppose that c(1) and c(2) are both in MN ([0,∞)). Then,

∣∣∣pN (β, c(2))− pN (β, c(1))
∣∣∣ ≤ β

2N2

N∑
i,j=1

∣∣∣c(2)
ij − c

(1)
ij

∣∣∣ .
In particular, for two different numbers c1, c2 ≥ 0, we have

|pN (β, c2)− pN (β, c2)| ≤ 1

2
β|c2 − c1| .

4 Extended Variational Principle

We follow here the method introduced by Aizenman, Sims and Starr in [3, 4]. We start this section
by defining a discrete random spin structure. The definition comes from the physicists’ cavity step,
as defined by Franz and Leone [13]. Recall that with the usual topology [0, 1] is compact. Let
[0, 1]N be the set of all ξ = (ξ1, ξ2, . . . ) such that each ξi ∈ [0, 1]. With the product topology, [0, 1]N

is also compact, and metrizable. For example, a metric compatible with the product topology is
d(ξ, ζ) =

∑∞
n=1 2−n|ξn − ζn|.

Let ∆ denote the subset consisting of those ξ ∈ [0, 1]N satisfying the additional conditions

ξ1 ≥ ξ2 ≥ . . . and ξ1 + ξ2 + . . . ≤ 1 .

This is a closed set, hence also compact.
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We also define ∆1 to be the subset consisting of those ξ ∈ ∆ such that
∑∞
n=1 ξn = 1. This is

not a closed set, but it is a Borel set:
⋂∞
m=1

⋃∞
n=1{

∑n
k=1 ξk ≥ 1−m−1}.

Let qN refer to the set of τ = (τ1, τ2, . . . ) with each τn ∈ [q]. Let qN×N refer to the set of all
T = (τ (1), τ (2), . . . ) with each τ (n) ∈ qN. With the product topology, qN×N is also compact and
metrizable.

Finally, let S∞ denote the set of all bijections π : N → N such that {n : π(n) 6= n} is finite.
Given τ ∈ qN and π ∈ S∞, we defined τ ◦ π ∈ qN such that (τ ◦ π)n = τπ(n).

Definition 4.1 (a) Let M denote the set of all Borel probability measures on ∆× qN×N.
(b) Let S denote the subset of all L ∈M satisfying additional hypotheses:

(i) L({(ξ, T ) : ξ ∈ ∆1}) = 1,

(ii) For any π ∈ S∞, and any Borel subset A ⊆ ∆× qN×N

L({(ξ, T ) : (ξ, (τ (1) ◦ π, τ (2) ◦ π, . . . )) ∈ A}) = L(A) .

The set of all discrete random spin structures is S . In Section A.2 we will discuss a generalization of
this definition which represents a compactification. But for now, we define the cavity field functions.

Given k, let I ∈ {1, . . . , N}k denote (I1, . . . , Ik). Let us denote the union

IN
def
:=

∞⋃
k=0

{1, . . . , N}k .

Given I ∈ IN , we define |I| to be that integer k ∈ N0 such that I ∈ {1, . . . , N}k. Note that for
k = 0, we just denote I to be a placeholder ∅. We define a probability measure on this space

P̃N,c(A) =

∞∑
k=0

πcN (k)

Nk

∑
I∈{1,...,N}k

1A(I) .

Let ẼN,c be the associated expectation. We also define a Hamiltonian

H̃N : IN × [q]N × [q]N → R , H̃N (I, τ, σ) =

|I|∑
i=1

δ(τi, σIi) .

For I = ∅, we have |I| = 0 and the empty sum is interpreted as zero. With all of this set-up, we
define the “interaction” term of the cavity field function to be

G
(1)
N (β, c,L) =

∫
∆1×[q]N×N

ẼN,c

 1

N
ln

∞∑
α=1

ξα
∑

σ∈[q]N

exp
(
−βH̃N (I, τ (α), σ)

) dL(ξ, T ) . (13)

The “reaction” (or self-energy) term is

G
(2)
N (β, c,L) =

∫
∆1×[q]N×N

∞∑
K=0

πcN/2(K)

N
ln

( ∞∑
α=1

ξα exp

(
−β

K∑
k=1

δ(τ
(α)
2k−1, τ

(α)
2k )

))
dL(ξ, T ) .

(14)
The analogue of Guerra’s replica symmetry breaking bounds ([14]) are the following.
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Theorem 4.2 For any β, c ≥ 0 and N ∈ N, and for any L ∈ S ,

pN (β, c) ≤ G
(1)
N (β, c,L)−G(2)

N (β, c,L) .

We will prove this in the Appendix.
In the next section we will use random spin structures coming from the Poisson-Dirichlet,

Derrida-Ruelle random probability cascade. But first, we try to motivate the present formulation
by indicating how to obtain opposite bounds using the Boltzmann-Gibbs random spin structures.
It is these opposite bounds that are most closely related to the physicists’ original perspective on
the cavity step [22].

Theorem 4.3 For any β, c ≥ 0,

lim
N→∞

pN (β, c) = lim
N→∞

inf
L∈S

GN (β, c,L) . (15)

We do not use this theorem for any further applications in this paper. But its proof helps to
motivate the definition of the N -step cavity field functionals. The proof of the theorem will be
given in the next subsection.

4.1 Boltzmann-Gibbs Spin Structures

Now we construct an example of a discrete random spin structure, which we will call LN,β,c. This
is derived from the Boltzmann-Gibbs distribution, itself.

Let J be distributed according to PN,c. Let N = qN . Let σ(1), . . . , σ(N ) be any enumeration of
[q]N . For α ∈ {1, . . . ,N}, let

ξα = ωN,βJ (σ(α)) .

For α > N , let ξα = 0 and let σ(α) ∈ [q]N be any configuration. The choice of σ(α) does not matter
since ξα = 0. Let I1, I2, · · · ∈ {1, . . . , N} be i.i.d., uniformly distributed on {1, . . . , N}, independent
of J . For each α ∈ N, let τ (α) ∈ [q]N be

τ
(α)
k = σ

(α)
Ik

for k ∈ N.

The measure LN,β,c describes the marginal distribution of (ξ, T ).
The key identity for proving Theorem 4.3 is as follows.

Lemma 4.4 We have the identities

G
(2)
N (β, c,LM,β,c′) =

M

N

(
pM

(
β, c′ +

cN

M

)
− pM (β, c′)

)
,

and

G
(1)
N,c(β,LM,β,c′) =

M +N

N
pM+N

(
β, ĉ(M,N)

)
− M

N
pM (β, c′) ,

where pN (β, c) for a general matrix c ∈ MN ([0,∞)) was defined in (8) and the matrix ĉ(M,N) ∈
MM+N ([0,∞)) is defined as

ĉ
(M,N)
i,j =


c′(1 + N

M ) if i, j ≤M ,

c(1 + N
M ) if i ≤M , j > M or if j ≤M , i > M ,

0 if i, j > M .
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We will prove this lemma in the Appendix. It follows from the definitions and infinite divisibility
of the Poisson process. Infinite divisibility is merely the mathematical condition related to the fact
that the Poisson random variables admit interpolation.

The physicists’ cavity step amounts to considering a very large system in equilibrium. We will
say that the size is M . Then the physicists consider removing a smaller number of spins, say
N ≤M , which creates a cavity in the system. But mathematically one can instead consider adding
N spins. (In other words the added spins are a cavity in a system of size M +N .)

This has two effects. Firstly, each of the N spins interacts with all the M spins in a mean-field
way, i.e., in a way that represents the underlying symmetry of the model, called exchangeability. To

leading order this is represented by G
(1)
N . The simplification occurs because the leadin order terms

in the interaction are linear. In other words, for each of the N spins it is as if it feels a random
external magnetic field, with the distribution of this magnetic field determined by the M spins in
“equilibrium,” and some extra random couplings.

The second effect is a reaction or self-energy term for the M spins. This is because, being a
mean-field model, the parameter of the model c is actually being scaled by the reciprocal of the
system size. So changing the system size amounts to a renormalization of the connectivity from c

to c(1+ N
M ). To leading order, the self-energy for the M spins is represented by G

(2)
N which actually

does not depend on the spins σ1, . . . , σN at all, only the spins in the M “equilibrium” system.
There are other terms in the Hamiltonian, amounting to interactions with two or more spins

among the N subsystem. But taking all these terms together still only gives a lower-order effect
which may be neglected in the thermodynamic limit. In essence, Lemma 4.4 is just a calculation
to show that we have correctly interpreted the physicists’ cavity step.

Proof of Theorem 4.3: The upper bounds of Theorem 4.2 imply that

p(β, c) = lim
N→∞

pN (β, c) ≤ lim inf
N→∞

inf
L∈S

(
G

(1)
N (β, c,L)−G(2)

N (β, c,L)
)
.

All we need to do is to establish the opposite bound,

p(β, c) ≥ lim sup
N→∞

inf
L∈S

(
G

(1)
N (β, c,L)−G(2)

N (β, c,L)
)
. (16)

From Corollary 3.2 and Lemma 3.3, we know that

p(β, c) = lim sup
N→∞

lim inf
M→∞

(
M +N

N
pM+N (β, c)− M

N
pM (β, c)

)
. (17)

But by Lemma 4.4, we know that

G
(1)
N,c(β,LM,β,c′)−G(2)

N (β, c,LM,β,c′) =
M +N

N
pM+N

(
β, ĉ(M,N)

)
− M

N
pM

(
β, c′ +

cN

M

)
, (18)

where

ĉ
(M,N)
i,j =


c′(1 + N

M ) if i, j ≤M ,

c(1 + N
M ) if i ≤M , j > M or if j ≤M , i > M ,

0 if i, j > M .

Choosing c′ = c/(1 + N
M ), we see that

M

N
pM

(
β, c′ +

cN

M

)
− M

N
pM (β, c) =

M

N

(
pM

(
β,

c

1 + N
M

+
cN

M

)
− pM (β, c)

)
.
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Using the bounds from Corollary 3.6, this implies∣∣∣∣MN pM

(
β, c′ +

cN

M

)
− M

N
pM (β, c)

∣∣∣∣ ≤ βcN

2(M +N)
. (19)

Similarly, using the fact that pM+N (β, c) = pM+N (β, c) for the matrix c with cij = c for all i, j, we
see that (choosing c′ as before)∣∣∣∣M +N

N
pM+N

(
β, ĉ(M,N)

)
− M +N

N
pM+N (β, c)

∣∣∣∣ ≤ βcN

M +N
,

using the matrix-version bound from Corollary 3.6. So, putting this together with (18) and (19),
we have∣∣∣∣G(1)

N,c(β,LM,β,c′)−G(2)
N (β, c,LM,β,c′) −

(
M +N

N
pM+N (β, c)− M

N
pM (β, c)

)∣∣∣∣ ≤ 3βcN

2(M +N)
.

Since this bound vanishes in the limit M →∞, before N goes to∞, and since the Boltzmann-Gibbs
spin structure is just one particular choice of a random spin structure, so that the true infimum is
no greater than this, we see that (17) does imply (16), as desired. �

5 Derrida-Ruelle Construction

Theorem 4.3 shows that the cavity functional

G
(1)
N (β, c,L)−G(2)

N (β, c,L)

needs to be minimized over discrete random spin structures L ∈ S . The optimal choice of the
measure has been conjectured to be described by a construction based on the Derrida-Ruelle random
probability cascade [11, 26]. The results we obtain in this section provide a rigorous proof to some
physicist’s results obtained with heuristic methods in [20, 30].

5.1 The Ultrametric space

The Derrida-Ruelle probability cascade construction is based on a rooted tree with finitely many
levels. Let us define T0 = {∅} where ∅ will denote a single vertex at the root level. For ` ∈ N, let
T` = N`. So a typical element of T` is α = (α1, . . . , α`) with α1, . . . , α` ∈ N. Let us denote this as
α` = (α1, . . . , α`) in order to explicitly denote the depth `.

Given α` = (α1, . . . , α`) in T`, let us define α`�k = (α1, . . . , αk) in Tk for each k = 1, . . . , `. Then,
given L ∈ N, we define a tree of depth L as TL which has vertex set

TL
def
:= T0 t T1 t · · · t TL ,

and such that the mother of each α1 = (α1) in T1 is the root ∅ ∈ T0 and the mother of each α` ∈ T`
for ` = 2, . . . , L is α`�k. As usual for trees, two vertices are connected if and only if one is the mother
of the other one, called the daughter.

The leaf set of a tree is the set of all vertices which have no daughters. So this is TL for TL.
Next we define a family of random probability distributions on the leaf set.
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Let VL denote the set of all L-tuples m(L) = (m1, . . . ,mL) satisfying

0 < m1 < . . . < mL < 1 .

For consistency, we define V0 = {∅}. For each L ∈ N0 and each m(L) ∈ VL, we will define a

probability distribution giving rise to random variables ξ̂m(L)(α(L)) for each α(L) ∈ TL, which are
nonnegative and such that ∑

α(L)∈TL

ξ̂m(L)(α(L)) = 1 ,

almost surely, for each choice of m(L). We use the hat to denote normalization, since we will con-
struct the probability measure ξ̂m(L)(α(L)) by normalizing an almost surely normalizable measure
ξm(L)(α(L)).

We can define this inductively as follows. We start by defining ξ̂∅ to be the unique (hence

non-random) probability measure on T0: ξ̂∅(∅) = 1.

5.2 The Poisson-Dirichlet Derrida-Ruelle distributions

To extend to the definition of ξm(L) to L ∈ N and m(L) ∈ VL, we will first quickly review the
definition of a general Poisson point process. This is because our construction uses Poisson-Dirichlet
distributions, based on Poisson point processes. But also, for certain proofs, the general definition
of a Poisson point process will be useful.

Suppose that X is a locally compact metric space. Suppose that Λ is a locally finite Borel
measure on X , meaning that for any compact set K ⊂ X , we have Λ(K) <∞. Given this, one may
define the Poisson process with intensity measure Λ to be Ξ, a random point process, meaning that
Ξ is a random N0-valued measure. Given n ∈ N and given disjoint compact sets K1, . . . ,Kn ⊆ X ,
we have the marginal distribution

P(Ξ(K1) = k1, . . . ,Ξ(Kn) = kn) =

n∏
i=1

πΛ(Ki)(ki) ,

for each choice of k1, . . . , kn ∈ N0. We remind the reader that the Poisson distribution was defined
in (5).

Due to infinite divisibility this is a consistent definition in the sense of the Kolmogorov consis-
tency conditions. It also leads to the alternative description in terms of the moment generating
functional. Suppose that f : X → [0,∞) is any Borel measurable function. Then

E
[
exp

(
−
∫
X
f(x)dΞ(x)

)]
= exp

(
−
∫
X

(1− e−f(x)) dΛ(x)

)
. (20)

This identity being true for all nonnegative, Borel measurable functions is equivalent to the consis-
tent family of marginal distributions described above. This general framework will be useful shortly.
Among many good reviews of Poisson processes, Ruelle’s paper on Derrida’s REM and GREM is
an exemplary reference [26].

Now we define the random measure ξ̂m(1) on T1 = N1 for each choice of m(1) = (m1) with
m1 ∈ (0, 1). Let us denote m1 as just m for this case, L = 1. Let Λm be the following locally finite
measure on X = (0,∞),

dΛm(x) = mx−m−1 dx .

Let Ξ be the An example of an easy calculation with (20) is the following:

11



Lemma 5.1 For any p > m and any λ > 0,

E
[
exp

(
−λ
∫ ∞

0

xp dΞ(x)

)]
= exp

(
−λm/p

∫ ∞
0

x−m/pe−x dx

)
.

This will be proved in Section A.3. This implies that
∫∞

0
x dΞ(x) is in (0,∞), almost surely. (Taking

λ to 0 we see that the probability to be ∞ is zero, and taking λ→∞, we see that the probability
to be 0 is zero.) In turn this implies that almost surely we can identify points

ξ1 ≥ ξ2 ≥ . . . > 0 ,

such that Ξ(A) =
∑∞
n=1 1A(ξn) for every Borel set A ⊆ (0,∞), and

∑∞
n=1 ξn is in (0,∞), almost

surely. A key property is the following stability property, whose proof may be found in the paper
[2]:

Theorem 5.2 Suppose that X1, X2, . . . are i.i.d., positive random multipliers, a.s., independent
of ξ1, ξ2, . . . , and such that E[Xm

i ] < ∞. Then the random point process A 7→
∑∞
n=1 1A(Xnξn) is

equal in distribution to the random point process A 7→
∑∞
n=1 1A(cξn) for c = (E[Xm

i ])1/m.

We will give a few hints of the proof in the Appendix.
Then we define ξ̂(m)((α)) for all α ∈ N as follows:

ξ̂(m)((α)) =
ξα

ξ1 + ξ2 + . . .
for α ∈ N.

The distribution of this random discrete probability measure is called the Poisson-Dirichlet distri-
bution PD(m, 0). It is one branch of the two-parameter Poisson-Dirichlet distributions (see [24]).

Note that we have now defined ξ̂m(1)(α(1)) for allm(1) ∈ V1 and α(1) ∈ T1, satisfying the desired

conditions, almost surely. Now we define ξ̂m(L) for all L ≥ 1 and m(L) ∈ VL, inductively. We have
defined it above for L = 1 and m(1) = (m) ∈ V1. Assuming L is in {2, 3, . . . } and that we have
defined the measure for all depths less than L, we treat the case of depth L as follows.

First, using the induction hypothesis we may assume the existence of random variables

ξ̂
m

(L)
�L−1

(α(L−1)) for all α(L−1) ∈ TL−1,

where m
(L)
�L−1 is defined as the restriction to the first L − 1 coordinates of m(L) = (m1, . . . ,mL).

Then, independently of that, for all α(L−1) ∈ TL−1, let us take Ξ(α(L−1)) to be a Poisson point
process with intensity ΛmL , such that all the Poisson point processes are independent for different
choices of α(L−1) ∈ TL−1. Each one may be written as

Ξ(α(L−1))(A) =

∞∑
n=1

1A(ξ(α(L−1))
n ) for all measurable A ⊆ (0,∞),

for some random numbers ξ
(α(L−1))
1 ≥ ξ

(α(L−1))
2 ≥ · · · > 0. The following is a corollary of Lemma

5.1 and Theorem 5.2, which we will prove this in the Apeendix.
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Corollary 5.3 Assuming 0 < m1 < · · · < mL then the nonnegative random variable

Z(m(L))
def
:=

∑
α(L)∈TL

ξ̂
m

(L)
�L−1

(α
(L)
�L−1) · ξ(α

(L)
�L−1)

αL

satisfies 0 < Z(m(L)) <∞, almost surely.

Then we complete the induction step by defining

ξ̂m(L)(α(L))
def
:=

1

Z(m(L))
ξ̂
m

(L)
�L−1

(α
(L)
�L−1) · ξ(α

(L)
�L−1)

αL for all α ∈ TL,

which is well-defined and normalized, almost surely.
Next one constructs a probability measure on spins, indexed by leaves of the tree.

5.3 The measures on measures construction

LetM1 denote the set of all probability measures on [q]. This is a finite-dimensional simplex. Using
the topology of weak-convergence on probability measures this simplex has its usual topology. In
particular it is compact and metrizable.

Let M2 denote the set of all Borel probability measures on M1. Then, with the topology of
weak convergence, this is also compact and metrizable. Indeed, the set of Borel measures on a
compact, metrizable set is always itself compact and metrizable when equipped with the topology
of weak-convergence.

Therefore, inductively, for all ` ∈ N, we letM`+1 denote the set of all Borel probability measures
onM`, equipped with the topology of weak-convergence. We denote a measure inM`+1 as µ(`+1).
But we note that the standard notation for its differential is somewhat cumbersome dµ(`+1)(µ(`)).

Now let µ(L) denote any measure in ML. This is our input. In order to initialize the induction
step, we change notation slightly,

µ
(L)
∅

def
:= µ(L) .

For each α(1) = (α1) ∈ T1, let µ
(L−1)

α(1) be a random element ofML−1, distributed according to µ
(L)
∅ ,

and such that they are all independent for different choices of α(1) ∈ T1.
Continue inductively. For ` = 2, . . . , L − 1 let F`−1 denote the σ-algebra generated by all the

random variable that were constructed at the previous level,

µ
(L−k+1)

α(k−1) for all k ≤ ` and α(k−1) ∈ Tk−1.

We construct µ
(L−`)
α(`) for all α(`) ∈ T` as follows.

Conditionally, given F`−1, let µ
(L−`)
α(`) be a random element of ML−`, distributed according to

µ
(L−`+1)

α
(`)
�`−1

. More precisely choose these random variables µ
(L−`)
α(`) , for each α(`) ∈ T`, such that they

are all conditionally independent, conditional on F`.
Finally, given all this, for each α(L) ∈ TL and each i ∈ N, let τi(α

(L)) be distributed according

to µ
(1)

α
(L)
�L−1

, such that they are all conditionally independent, conditional on F1. Let us define

τ(α(L)) = (τ1(α(L)), τ2(α(L)), . . . ) ∈ [q]N ,

13



for each α(L) ∈ TL. Then we may consider the pairs consisting of (ξ̂m(L)(α(L)))α(L)∈TL and

(τ(α(`)))α(`)∈TL . Note that TL is countable. We denote the distribution of such pairs as Lm(L),µ(L) .

Then since the set of possible α, here replaced by α(L) ∈ TL, is countable, this is an example of a
discrete random spin structure in S as in Definition 4.1.

Remark 5.4 The necessity to introduce the measure on measure structure comes from the fact
that, unlike in gaussian spin glass where the infinitely divisible distribution allows a continuous
parametrization of ansatz, here the lack of the property of infinite divisibility forces the introduction
of discrete iteration ansatz in the optimization procedure.

6 “Replica Symmetry Breaking” bounds

We obtain here rigorous bounds as a consequence of Theorem 4.2.

6.1 One level trees and the annealed bounds

The simplest case to consider is L = 1. Then m(1) = (m1) for some m1 ∈ (0, 1). For this case, we
choose to rewrite m1 as just m ∈ (0, 1), so thatm(1) = (m). In this case we have a Poisson-Dirichlet
distribution which according to our previous notation is

ξ̂(m)((1)) , ξ̂(m)((2)) , . . . .

We prefer to work directly with the Poisson point process ξ1 ≥ ξ2 ≥ · · · > 0, with intensity measure
Λm, defining

Z =

∞∑
n=1

ξn ,

which is almost surely in (0,∞). Then ξ̂(m)((α)) is equal to ξα/Z. It will turn out that the effect
of the normalization Z will cancel in the formula for

G
(1)
N (β, c,Lm(1),µ(1))−G(2)

N (β, c,Lm(1),µ(1)) .

But by using the Poisson point process directly, instead of the normalized Poisson-Dirichlet process,
we may may appeal to Theorem 5.2 to help in the calculations of (13) and (14).

Let us also refer to τ (α) = (τ
(α)
1 , τ

(α)
2 , . . . ), which are i.i.d., distributed according to µ

(1)
∅ = µ(1)

for some non-random measure µ(1) ∈M1. For each α ∈ N, and I ∈ IN , let us define

Xα(I) =
∑

σ∈[q]N

exp
(
−βH̃N (I, τ (α), σ)

)
.

Then, conditioning on I, these are i.i.d., random variables in α. In other words, the random

variables τ
(α)
1 , τ

(α)
2 , . . . , are all i.i.d., for different α’s. Therefore, the resulting marginal distribution

of the Xα(I)’s are i.i.d (for each fixed I ∈ IN ). Then Theorem 5.2 implies that

∞∑
α=1

ξα
∑

σ∈[q]N

exp
(
−βH̃N (I, τ (α), σ)

)
=

∞∑
α=1

ξαXα(I)
D
= E[Xα(I)m | I]1/m

∞∑
α=1

ξα ,
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where we indicate equality in distribution by D.
Note that the sum of the ξα’s is Z which is the normalization. So, since we are taking the

logarithm,

G
(1)
N (β, c,Lm(1),µ(1)) =

1

mN
ẼN,c [lnE[Xα(I)m | I]] ,

where the inner conditional expectation is over the µ
(0)
α ’s and the τ (α)’s, but not I. Similarly, we

obtain

G
(2)
N (β, c,Lm(1),µ(1)) =

1

mN

∞∑
K=0

πcN/2(K) lnE[Yα(K)m] ,

where we define

Yα(K) = exp

(
−β

K∑
k=1

δ(τ
(α)
2k−1, τ

(α)
2k )

)
.

A very easy warm-up is the limiting case m ↑ 1. Note that this limit is not a discrete spin structure
in S . In the Appendix we will mention a compactification. But this is not necessary, here. For
each m we have the upper bound

p(β, c) ≤ 1

mN
ẼN,c [lnE[Xα(I)m | I]]− 1

mN

∞∑
K=0

πcN/2(K) lnE[Yα(K)m] .

The right hand side is continuous in m. Therefore, taking the limit as m → 1, we still have the
upper bound

pN (β, c) ≤ 1

N
ẼN,c [lnE[Xα(I) | I]]− 1

N

∞∑
K=0

πcN/2(K) lnE[Yα(K)] . (21)

Finally, to make the bound even easier we may take µ(1) ∈ M1 to be the uniform measure on [q].

In other words, the τ
(α)
i ’s are i.i.d., random, uniformly distributed on [q]. For this simplified case,

E[Yα(K)] = E

[
exp

(
−β

K∑
k=1

δ(τ
(α)
2k−1, τ

(α)
2k )

)]
=

[
1− 1− e−β

q

]K
,

⇒ 1

N

∞∑
K=0

πcN/2(K) lnE[Yα(K)] =
c

2
ln

(
1− 1− e−β

q

)
.

Similarly,

E[Xα(I) | I] =
∑

σ∈[q]N

E

exp

−β |I|∑
i=1

δ(τ
(α)
i , σIi)

 ∣∣∣∣ I
 = qN

[
1− 1− e−β

q

]|I|
,

⇒ 1

N
ẼN,c [lnE[Xα(I) | I]] = ln(q) + c ln

(
1− 1− e−β

q

)
.

Therefore, combining this with (21), we obtain the bound

pN (β, c) ≤ ln(q) +
c

2
ln

(
1− 1− e−β

q

)
,
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which re-derives the annealed upper bound (12) in Theorem 3.4, without the sum-rule correction. In
fact, one can include the correction term also in the analogue of Guerra’s upper bound in Theorem
4.2. But we did not do this here, because we do not have any method to control the error term.

The ansatz we have taken here is not the general case of the so-called “replica symmetric”
ansatz. We will explain that in the next section: the difference is that there should be two steps,
m1 < m2 and then one takes the limit m1 ↓ 0, m2 ↑ 1. Instead we just have 1 level, with m ↑ 1. So
this is a specialized ansatz, which one could call the “trivial replica symmetric ansatz.” Moreover,
we chose the most basic choice for µ(1) ∈M1. So we could call this the “trivial, symmetric replica
symmetric ansatz.” Next we will consider a more refined upper bound (see [20, 30]). There existes
a local instability point within the replica symmetric ansatz, where another replica symmetric trial
state gives a lower bound than the trivial, symmetric replica symmetric ansatz.

6.2 Two level trees and the replica symmetric ansatz

Recall that FL ⊆ FL−1 ⊆ · · · ⊆ F1, defined in Section 5.3 is a reversed filtration.

Lemma 6.1 For L ≥ 0 and m(L) ∈ VL and µ(L) ∈ML, define two sequences of random variables:

X
(L)
α (I) = Xα(I) and Y

(L)
α (K) = Yα(K) as defined in Section 6.1, and for ` = 1, . . . , L− 1,

X(`)
α (I) = E

[
X(`+1)
α (I)m`+1 | FL−` ∨ σ(I)

]1/m`+1

and

Y (`)
α (K) = E

[
Y (`+1)
α (K)m`+1 | FL−`

]1/m`+1

.

Then the cavity field functionals are calculated at the final step of the backward iteration

G
(1)
N (β, c,Lm(L),µ(L)) =

1

m1N
ẼN,c

[
lnE

[
X(1)
α (I)m1 | I

]]
and

G
(2)
N (β, c,Lm(L),µ(L)) =

1

m1N

∞∑
K=0

πcN/2(K) lnE[Y (1)
α (K)m1 ] .

This lemma is proved just like Corollary 5.3, proved in the Appendix.
The replica symmetric ansatz is obtained by taking a L = 2 level tree and then taking the limit

m1 ↓ 0, m2 ↑ 1. In order to derive the relevant limit note that if one takes m1 ↓ 0 in Lemma 6.1
then the last step of the backward iteration is

G
(1)
N (β, c,Lm(L),µ(L)) =

1

N
ẼN,cE

[
ln
(
X(1)
α (I)

)]
and

G
(2)
N (β, c,Lm(L),µ(L)) =

1

N

∞∑
K=0

πcN/2(K)E
[
ln
(
Y (1)
α (K)

)]
,

(22)

which is a standard calculation based on the fact that limm↓0m
−1 lnE[Xm] = E[ln(X)] for random

variables X satisfying mild conditions to allow the application of the dominated convergence the-
orem. A sufficient condition is that both Xm and ln(X) are integrable, which is satisfied in the
formulas above. If we let L = 2 and take the limit m2 ↑ 1 then in addition to (22) we have

X(1)
α (I) = E[Xα(I) | F1 ∨ σ(I)] and Y (1)

α (K) = E[Yα(K) | F1] . (23)
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In principle, equations (22) and (23) determine the replica symmetric ansatz, once one makes a
choice for µ(2) ∈M2, a non-random measure on measures.

For s ∈ [q] and t satisfying −(q− 1)−1 ≤ t ≤ 1, denote a measure µ
(1)
s,t ∈M1, i.e., a measure on

[q], such that

µ
(1)
s,t ({r}) = tδ(r, s) +

1− t
q

δ(r, s)) .

For a chosen t, let µ
(2)
t ∈M2 be the measure on measures, such that

µ
(2)
t ({µ(1)

s,t }) =
1

q
for each s ∈ [q].

In other words, we may consider µ
(1)
α in the following way for each α ∈ N. Let Sα be chosen

uniformly at random in [q], such that all the Sα’s are independent. Then let µ
(1)
α = µ

(1)
Sα,t

. This has
the right distribution.

Note that this is a very specific choice; it is not general. But it is a choice which makes the

following analysis simpler. Also note that taking the special value t = 0 then µ
(1)
s,0 is uniform on

[q], not depending on s. Therefore at this point all the µ
(1)
α ’s are uniform on [q], and are therefore

non-random. From this it is apparent that taking t = 0 recovers the “trivial, symmetric replica
symmetric” ansatz of the last section which led to the annealed upper bound. We now want to use
this set-up to derive the following result

Corollary 6.2 Suppose q > 1. If

c > clocRS(q)
def
:= (q − 1)2 and β > βloc

RS(c, q)
def
:= − ln

(
1− q

1 +
√
c

)
,

then p(β, c) < P(β, c). The quenched pressure is strictly less than the annealed pressure. Moreover,
within the replica symmetric ansatz this is due to a local instability, commonly associated to a second
order phase transition.

Proof: The proof is a corollary of Theorem 4.2. The values we obtain for µ(2) = µ
(2)
p , written

above, are

lim
m1↓0
m2↑1

G
(1)
N (β, c,L

m(2),µ
(2)
t

) = ln(q) + c ln

(
1− 1− e−β

q

)
+ g(1)(β, c, q, t) and

lim
m1↓0
m2↑1

G
(1)
N (β, c,L

m(2),µ
(2)
t

) = − c
2

ln

(
1− 1− e−β

q

)
+ g(2)(β, c, q, t) ,

where

g(1)(β, c, q, t) =

∞∑
k=0

πc(k)
∑

τ1,...,τk∈[q]

q−k ln

(∑
s∈[q]

q−1
k∏
i=1

(1− xt(qδ(τi, s)− 1))

)
and

g(2)(β, c, q, t) =
c

2q

(
(q − 1) ln(1 + xt2) + ln(1− (q − 1)xt2)

)
,
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and in both expressions

x = x(β, q)
def
:=

1− e−β

q − 1 + e−β
.

These calculations are straightforward given the definitions above, but require some steps to prove.
Therefore, we relegate the derivation to section A.4. For now we use these formulas to finish the
argument for the proof of the present corollary.

Since g(1) and g(2) are both zero when p = 0, we note that the difference between the upper
bound obtained by the replica symmetric ansatz with p 6= 0 and the annealed bound is

g(1)(β, c, q, t)− g(2)(β, c, q, t) .

If one can prove that for any t ∈ [−(q − 1)−1, 1] this difference is strictly negative, then that
will establish an upper bound for p(β, c) which is strictly less than P(β, c). It suffices to do a
perturbative argument for t close to zero, and establish that the leading order term is negative. It
is straightforward to Taylor expand these two functions in t. We claim that

g(1)(β, c, q, t) = −1

4
(q − 1)c2x4t4 +O(t6) and (24)

g(2)(β, c, q, t) = −1

4
(q − 1)cx2t4 +O(t6) as t→ 0. (25)

This is another calculation which we prefer to derive carefully in section A.4. From this one can
see that there is an instability of the “trivial, symmetric replica symmetric” ansatz, i.e., the leading
order term as t → 0 is negative meaning that an asymmetric replica symmetric ansatz gives an
even lower trial for the minimizer, if

1

4
(q − 1)

[
c2x4 − cx2

]
> 0 ⇔ cx2 > 1 .

But recalling the definition of x = x(β, q) above, this means

1− e−β

q − 1 + e−β
>

1√
c
,

and this leads to the conditions stated as the hypothesis of the corollary. �

Note that this result shows a local instability within the replica symmetric ansatz. One can also
consider a 1-level replica symmetry breaking ansatz, which amounts to taking L = 3, and taking the
limit m1 ↓ 0 and m3 ↑ 1, but keeping m2 strictly between 0 and 1 as a generic point, representing
the height of the middle level.

So far we have proved annealed upper bounds for all β and c,

p(β, c, q) ≤ P(β, c, q) ,

from Theorem 3.4. We have also proved that for a certain regime we must have strict inequality:
p(β, c, q) < P(β, c, q) when the hypotheses of Corollary 6.2 are satisfied, which are conditions on
the triple (β, c, q). Next we prove that in a certain high-temperature or low-connectivity regime,
the annealed pressurre is correct, so that one has equality rather than strict inequality.
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7 Constrained Second Moment Method

The β → ∞ limit of the q-state Potts model is the q-coloring problem. Namely, if for any edge
two vertices have the same color then the β → ∞ limit gives the entire coloring probability zero.
So, if there are any proper colorings of the full graph with q-colors, then the β → ∞ limit of the
Boltzmann-Gibbs measure should be the uniform measure on the set of all proper colorings.

The problem was studied in [1] where, using a variant of the second moment method, the critical
q for each c was identified within an interval. The error bound, when translated to relative errors,
are vanishingly small in the q →∞ limit. The physics interpretation of their results is that even at
β =∞, if c is sufficiently small with q fixed, the model is in the high-temperature, low-connectivity
region. Here we tackle instead the positive temperature regime and we state our result in two
separate cases.

Theorem 7.1 (1) If q = 2 then for β ≤ β∗(c, 2) = βloc
RS(c, 2), we have p(β, c, q) = P(β, c, q).

(2) If q > 2 then there is a β∗(c, q) such that for β ≤ β∗(c, q), we have p(β, c, q) = P(β, c, q).
Moreover we have lower bounds on β∗(c, q):

β∗(c, q) ≥ β1(c, q) = − ln

(
1− q

1 +
√
c(q − 1)/[2 ln(q)]

)
.

A few comments are in order. Firstly, [20] it was conjectured that the critical temperature of
this model is the same as for the model with extra randomness: for every edge present, one has a
an independent, uniform random permutation π on [q], such that instead of the term δ(σi, σj) in
the Hamiltonian one has δ(σi, π(σj)). This is one of several possible extensions of the Viana-Bray
model for q > 2. But for q = 2 it is equivalent to the Viana-Bray model. If one takes the conjecture
in [20] for granted, then for q = 2 the critical temperature would be deduced from work on the
Viana-Bray model by Guerra and Toninelli [17]. In particular, our result (1) does confirm this
picture. Note that β∗(c, 2) is the correct value since we know p(β, c, 2) 6= P(β, c, 2) for β > β∗(c, 2)
by Corollary 6.2.

For q > 2 the second moment method introduced in [1] leads to an optimization which presum-
ably has a trivial solution for a larger region than one can prove. Therefore we do not claim that
β1(c, q) is sharp. On the other hand, solving the equation for the relationship between c and q in
the β → ∞ limit, we do recover the zero-temperature limit of the pressure: for a fixed q, we do
have p(∞, c, q) = P(∞, c, q) as long as c ≤ 2(q − 1) ln(q − 1).

7.1 Bounds from entropy positivity

Let us define the random entropy density at finite volumes as

sN (J)
def
:= − 1

N

∑
σ∈[q]N

ωN,J (σ) lnωN,J (σ) ,

for each J ∈MN (R). In particular, note that for finite N , if J ∈MN ([0,∞)) admits a zero energy
ground state, then

lim
β→∞

sN (βJ) =
1

N
ln
(
|{σ ∈ [q]N : HN (σ,J) = 0}|

)
,
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as one desires. In particular it is nonnegative. In fact, whether or not J admits a zero-energy
ground state, the entropy is always nonnegative because for each σ ∈ [q]N , the probability ωN,J (σ)
is at most 1 because this is a discrete probability measure. Therefore, − ln(ωN,J (σ)) ≥ 0. Also, it
is easy to see that

−β ∂

∂β
pN (βJ) = − β

N
· ∂
∂β

lnZN (βJ) =
1

N

∑
σ∈[q]N

βHN (σ, βJ)ωN,βJ (σ) = sN (βJ) + pN (βJ) .

So, since pN (βJ) is a convex function of β, we see that

sN (βJ) = −β ∂

∂β
pN (βJ) + pN (βJ) ≤ β

δ
[pN ([β − δ]J)− pN (βJ)] + pN (β,J) ,

for any δ > 0. This leads to the following conclusion:

Corollary 7.2 For q > 1, let β∗(c, q) be the infimum of the set {β ≥ 0 : p(β, c, q) 6= P(β, c, q)}.
Then

β∗(c, q) ≤ inf

{
β : ln(q) +

c

2
ln

(
1− 1− e−β

q

)
≤ −βc

2
· e−β

q − 1 + e−β

}
.

Since we proved in Theorem 7.1 that β∗(c, q) > 0 for all c and q, this result implies a phase

transition, i.e., existence of a critical temperature, as long as c > c∗(q)
def
:= 2 ln(q)/| ln(1 − q−1)|.

In other words, p(β, c, q) cannot be analytic beyond this point, because of the “identity theorem”
from complex analysis: it is identically equal to P(β, c, q) for a positive interval β < β∗(c, q),
and P(β, c, q) is analytic. Therefore, it would have to equal P(β, c, q) identically, unless there is
a phase transition in the sense of a point of non-analyticity. It is interesting to compare this to
Corollary 6.2. If c > min{c∗(q), cloc

RS(q)}, then there is a phase transition. For q = 2, 3, 4 the smaller
number is cloc

RS(q). But for q ≥ 5, the first transition is at c∗(q). This means that there is a replica
symmetry breaking and/or a discontinuous phase transition.

Proof of Corollary 7.2: Define the quenched entropy density to be

sN (β, c) = EN,c [sN (βJ)] .

Then we know that it is still nonnegative, since it is the expectation of a pointwise nonnegative
random variable. Also, for each δ,

sN (β, c) ≤ β

δ
[pN (β − δ, c)− pN (β, c)] + pN (β, c) .

This means that

0 ≤ β

δ
[p(β − δ, c)− p(β, c)] + p(β, c) .

But if β ≤ β∗(q, c) then p(β, c) = P(β, c) and p(β − δ, c) = P(β − δ, c). Since P(β, c) is analytic
in β, we make take a derivative. In other words, we make take the limit δ ↓ 0. Therefore, we find

β ≤ β∗(q, c) ⇒ 0 ≤ −β ∂

∂β
P(β, c) + P(β, c) ,

which is the condition from the statement of the corollary. �
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7.2 Large deviation problem

We now return to the proof of Theorem 7.1 with an elementary calculation.

Lemma 7.3 Given an R-replica configuration ΣR = (σ(1), . . . , σ(R)) ∈ qN×R, let HN (ΣR,J) de-
note the sum of HN (σ(r),J) for r = 1, . . . , R. Then

EN,c
[
e−βHN (ΣR,J)

∣∣ {|J | = K}
]

=

 1

N2

N∑
i,j=1

e−β
∑R
r=1 δ(σ

(r)
i ,σ

(r)
j )

K

,

for each K ∈ N0.

Proof: This is merely the concatenation of two elementary and well-known results: for R
independent Poisson random variables, X1, . . . , XR, with expectations λ1, . . . , λR, conditioning on
the event {X1 + · · ·+XR = K} results in the multinomial distribution:

P({X1 = k1 , . . . , Xr = kR} | {X1+· · ·+XR = k1+· · ·+kR}) =
K!∏R
r=1 kr!

R∏
r=1

(
λr

λ1 + · · ·+ λR

)kr
,

and the binomial (or more generally multinomial) formula. �

In order to carry out the second moment calculation, let introduce the restricted the partition
function. For N = N q, with N ∈ N, let

[q](N ,q) = {σ ∈ [q]Nq : ρσ(s) = q−1 for each s ∈ [q]} .

These are the “balanced” configurations. The constrained partition function will be defined

Z̃(N ,q)(J) =
∑

σ∈[q](N ,q)

e−βHN (σ,J) .

LetM([q]2) be the set of all probability measures on [q]2, and letM∗([q]2) denote the subset of those
measures such that the marginal on both factors in [q] × [q] are uniform. Finally, let M∗([q]2, N)
denote the set of all µ ∈ M∗([q]2) such that Nµ({(r1, r2)}) is an integer for each (r1, r2) ∈ [q]2.
Then the following formulas immediately follow from Lemma 7.3:

EN,c
[
Z̃(N ,q)(βJ)

∣∣ {|J | = K}
]

=
∣∣∣[q](N ,q)∣∣∣ eK ln

(
1− 1−e−β

q

)

and

EN,c
[
Z̃(N ,q)(βJ)2

∣∣ {|J | = K}
]

=
∑

µ∈∆̃N ([q]2)

N !∏
(r1,r2)∈[q]2 [Nµ({(r1, r2)})]!

eKw(β,q,µ) ,

where w(β, q, µ) = ln
(

1− 2(1− e−β)q−1 + (1− e−β)2
∑

(r1,r2)∈[q]2 µ({(r1, r2)})2
)

.
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Corollary 7.4 For any κ > 0, and writing N = N q,

lim
N→∞

K/N→κ/2

1

N
lnEN,c

[
Z̃(N ,q)(β,J)

∣∣ {|J | = K}
]

= P(β, κ, q) and

lim
N→∞

K/N→κ/2

1

N
lnEN,c

[
Z̃(N ,q)(β,J)2

∣∣ {|J | = K}
]

= max
µ∈M∗([q]2)

φ(2)(β, κ, q, µ) where

φ(2)(β, κ, q, µ) = s(µ) +
κ

2
ln

1− 2(1− e−β)

q
+ (1− e−β)2

∑
(r1,r2)∈[q]2

µ({(r1, r2)})2

 .

Here we have used the symbol s(µ) for the entropy

s(µ) = −
∑

(r1,r2)∈[q]2

µ({(r1, r2)}) lnµ({(r1, r2)}) .

Proof: Both follow from Stirling’s formula, the previous formulas and Varadhan’s Lemma or
rather Laplace’s method which suffices. See for example, [10]. �

With this set-up, we will see that the condition to use the second moment method at parameters
(β, c, q) is

max
µ∈M∗([q]2)

φ(2)(β, q, c, µ) = 2P(β, c, q) .

(The variable κ is serving as a placeholder for c at present.) In light of Theorem 3.4 we also see that
the condition is that ρΣR(s) = q−R for all choices of s = (s1, . . . , sR) ∈ [q]R. This merely restates
the fact that the empirical measure must collapse on the uniform measure. If the optimizer of the
large deviation principle µ ∈M([q]2), one does recover the result above.

We solve this problem by first analyzing the q = 2 case. We note that generally speaking, for
all q,

φ(2)(β, c, q, µ)− 2P(β, c, q) = −
∑

(r1,r2)∈[q]2

µ({(r1, r2)}) ln[q2µ({(r1, r2)})]

+
c

2
ln

(
1 +

x2

q2

∑
(r1,r2)∈[q]2

[q2µ({(r1, r2)})− 1]2

)
,

(26)

where x = x(β, q) = (1 − e−β)/(q − 1 + e−β), as was defined in Section 6.2. For q = 2, one may
control the second term on the right hand side by a linearization.

7.3 Ising case: q = 2

For q = 2 by the conditions on the marginals, we may parametrize µ ∈M∗([q]2) by a single number

θ = 2µ({(1, 1)}) = 2µ({(2, 2)}) , 1− θ = 2µ({(1, 2)}) = 2µ({(2, 1)}) .

Hence, using (26) and the linearization inequality ln(1 + t) ≤ t,

φ(2)(β, c, 2, µ)− 2P(β, c, 2) ≤ −θ ln(2θ)− (1− θ) ln[2(1− θ)] +
1

2
cx2 (2θ − 1)2 .
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The right hand side is directly related to the large deviation problem for the mean field Ising/q = 2
Potts model, i.e., the Curie-Weiss model. From this it is easy to see that the stability of the
symmetric ansatz is cx2 ≤ 1.

In other words, when this condition is satisfied the right hand side has no critical point other
than θ = 1/2. So the unique maximizer of the right hand side is θ = 1/2, at which point the right
hand side equals zero. So the left hand side is always bounded above by 0. This means that

max
µ∈M∗([q]2)

φ(2)(β, c, 2, µ) = 2P(β, c, 2) ,

because the totally symmetric choice of µ, corresponding here to θ = 1/2, does give equality. As we
will see in the next section, this condition guarantees p(β, c, q) = P(β, c, q), in this case for q = 2.

7.4 The optimization principle

In Theorem 9 of [1], it is proved a general result which implies that, to find the maximizer of
φ(2)(β, c, q, µ) among all µ ∈M1([q]2), the class of measures µ on [q]2 such that

∑
r2∈[q] µ(r1, r2) =

q−1 for each r1 ∈ [q], it suffices to consider a very restricted subclass. For k ∈ {0, 1, . . . , q} and t a
real number satifying 0 ≤ t ≤ q, define the measure µk,t where

µk,t({(r1, r2)}) =


q−2 , if r1 ≤ k,

tq−2 , if r1 > k and r2 = 1,
q−t
q−1 · q

−2 , if r1 > k and r2 > 1.

It follows the result that one may restrict the optimizer of φ(2) to this subset of measures among all
µ ∈ M1([q]2), which is a larger class than M∗([q]2) so definitely includes that optimizer. Denote
Φ(2)(β, c, q, k, t) = φ(2)(β, c, q, µk,t). Then direct calculation shows

Φ(2)(β, c, q, k, t)−2P(β, c, q) =
c

2
ln

(
1 +

x2(q − k)(t− 1)2

q(q − 1)

)
−

(q − k)
[
t ln t+ (q − t) ln

(
q−t
q−1

)]
q2

,

where x = x(β, q) = (1 − e−β)/(q − 1 + e−β) is as defined before in Section 6.2. Note that in
this formula k now appears as a parameter. So, since we are just trying to optimize this quantity,
it suffices to take k real in [0, q]. We note that x(∞, q) = 1/(q − 1). So, defining C(β, q, c) and
K(β, q, k) through

(q − K(β, q, k)) =

(
x(β, q)

x(∞, q)

)2

(q − k) and C(β, q, c) =

(
x(β, q)

x(∞, q)

)2

c ,

we see that modulo an overall multiplier, the difference is actually equal to the zero temperature
quantity with c rescaled to C and the “real parameter” k rescaled to K(
x(β, q)

x(∞, q)

)2 (
Φ(2)(β, c, q, k, t)− 2P(β, c, q)

)
= Φ(2)(∞,C(β, q, c), q,K(β, q, k), t)−2P(∞,C(β, q, c), q) .

We are looking for the optimal choice of real parameters k, t ∈ [0, q] in the left hand side, and the
positive multiplier [x(β, q)/x(∞, q)]2 does not affect the arg-max. Moreover, in Theorem 7 of [1],
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it was studied the β = ∞ problems, which is the right hand side. In the notation of our present
context, [1] showed that as long as C ≤ 2(q − 1) ln(q − 1), the optimal choice of t is t = 1, which
is the symmetric point. In fact, for t = 1 the value of K becomes irrelevant, because all measures
with t = 1 are the same. Therefore, using results of [1], we can finish the proof of our result.

Proof of Theorem 7.1: Using the condition C(β, q, c) ≤ 2(q − 1) ln(q − 1), and then using κ
as a place-holder for c momentarily, the results above in conjunction with Corollary 7.4 imply that
if κ ≤ 2(q − 1) ln(q − 1)[x(∞, q)/x(β, q)]2, then

lim
N→∞

K/N→κ/2

1

N
lnEN,c

[
Z̃(N ,q)(βJ)2

∣∣ {|J | = K}
]

= 2 lim
N→∞

K/N→κ/2

1

N
lnEN,c

[
Z̃(N ,q)(βJ)

∣∣ {|J | = K}
]
,

and the right hand side equals 2P(β, c, q). By Hölder’s inequality and convexity generally we know
that E[lnX] ≥ 2 lnE[X]− 1

2 lnE[X2], for any nonnegative random variable X. Therefore,

lim
N→∞

K/N→κ/2

1

N
EN,c

[
Z̃(N ,q)(βJ)

∣∣ {|J | = K}
]
≥ P(β, κ, q) .

Concentration of measure may be established for |J | in the measure PN,c. Namely |J |/N , the
variable we have called κ/2 up to now, concentrates around c/2. Moreover, one can show that
the conditional expectation is Lipschitz as a function of κ by general principles. Therefore, this
establishes the lower bound in the limit as N → ∞ along integer multiples of N , p(β, c, q) ≥
P(β, c, q). In other words, since we know the limit of pN (β, c, q) exists as N → ∞, it does not
matter what subsequence one takes to obtain that limit. This lower bound matches the upper
bound so it gives the identity.

For q = 2 the argument is the same except that we use the analysis of Subsection 7.3. �

A Appendix

A.1 Interpolation Results

The proofs in this subsection are all based on Lemma 3.1. As a first step, we note that by using
the series expansion in the radius of convergence of ln(1− x),

d

dt
pN (β, c(t)) = −

∞∑
R=0

(1− e−β)R

2N2R

∑
s∈[q]R

N∑
i,j=1

dcij
dt

〈〈
R∏
r=1

δ(σ
(r)
i , sr)δ(σ

(r)
j , sr)

〉〉
N,β,c(t)

. (27)

Proof of Corollary 3.2: Let N = N1 +N2. Let us define c(0) and c(1) such that pN (β, c(0))
and pN (β, c(1)) are the left- and right-hand-sides of (9), respectively:

c
(0)
ij ≡ c , for all i, j, and c

(1)
ij =

N

N1
1A(i)1A(j) +

N

N2
1B(i)1B(j) ,

where denote two sets, A = {1, . . . , N1}, B = {N1 + 1, . . . , N}. We remind the reader of the
notation introduced in (11). Let us extend this as follows

ρAΣR(s) =
1

N1

∑
i∈A

R∏
r=1

δ(σ
(r)
i , sr) and ρBΣR(s) =

1

N2

∑
i∈B

R∏
r=1

δ(σ
(r)
i , sr) .
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Then using (27) for c(t) = (1− t)c(0) + tc(1),

d

dt
pN (β, c(t)) = −N1N2

2N2

∞∑
R=0

(1− e−β)R

R

∑
s∈[q]R

〈〈[
ρAΣR(s)− ρBΣR(s)

]2〉〉
N,β,c(t)

.

This has a definite sign, which implies pN (β, c(0)) ≥ pN (β, c(1)). �

Proof of Lemma 3.3: To recapitulate Fekete’s argument, for any M ≤ N ,

xN ≥
MbN/Mc

N
xM +

N −MbN/Mc
N

xN−MbN/Mc ≥
MbN/Mc

N
xM +

1

N
min

k≤M−1
kxk ,

which shows that lim infN→∞ xN ≥ xM for each M . Hence lim infN→∞ xN ≥ supM→∞ xM , and
the supremum is no less than the limit superior, lim supM→∞ xM . Of course the opposite inequality
lim supM→∞ xM ≥ lim infN→∞ xN , holds by definition. So Fekete’s argument is complete.

Let x∗ = supN xN . Defining NN,K = NK,

NN,K −M
NN,K

xNN,K −
M

NN,K
xM ≥

1

K

K∑
k=1

(
MM,N,k +N

N
xMM,N,k+N −

MM,N,k

N
xMM,N,k

)
,

where we define MM,N,k = M + N(k − 1). The left hand side converges to x∗ as K → ∞, while
the right hand side is uniformly bounded below by

inf
M ′≥M

(
M ′ +N

N
xM ′+N −

M ′

N
xM ′

)
.

So taking the limit M →∞ of the last expression, and then taking the limit superior as N →∞,

x∗ ≥ lim sup
N→∞

lim inf
M→∞

(
M +N

N
xM+N −

M

N
xM

)
.

But for any M , (M+N
N xM+N−M

N xM ) ≥ xN , by superadditivity again, and taking the limit superior
of this gives x∗. So x∗ is not only an upper bound for the right hand side of the equation displayed
above, it is a lower bound, too. �

Proof of Theorem 3.4: Using (27) and the definition of ρΣR(s) from (11), we can rewrite

d

dt
pN (β, ct) = − c

2

∞∑
R=0

(1− e−β)R

2N2R

∑
s∈[q]R

〈〈
ρΣR(s)2

〉〉
N,β,ct

.

Therefore, using the fact that
∑
s∈[q]R ρΣR(s) = 1 for every ΣR ∈ [q]N×R, we see that

d

dc
(P(β, c)− pN (β, c)) =

1

2

∞∑
R=0

(1− e−β)R

R

∑
s∈[q]R

∑
s∈[q]R

〈〈[
ρΣR(s)− q−2

]2〉〉
N,β,c

.

Using the fact that pN (β, 0) = P(β, 0) = ln(q), and integrating, this proves the result. �

Proof of Corollary 3.6: Apply (27) to c(t) = (1− t)c(1) + tc(2), defined for t ∈ [0, 1], to obtain

the bound
∣∣ d
dt pN (β, c(t))

∣∣ ≤ β
2N2

∑N
i,j=1

∣∣∣c(2)
ij − c

(1)
ij

∣∣∣, and then integrate. The result for numbers

follows by taking c(1) and c(2) such that c
(1)
ij = c1 and c

(2)
ij = c2 for all i, j. �
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A.2 Extended variational principle bounds

The proofs in this section are more involved than the previous section. In order to prove bounds
and the extended variational principle, as stated, we first generalize the definition of random spin
structure and cavity field functionals. The definition we give is based on the sampling-resampling
definition Kingman eventually gave for his random partition structures [18, 19]. Recall from Section
4 that [q]N denotes the set of all infinite spin configurations τ = (τ1, τ2, . . . ) with each τn ∈ [q]. Let
[q]N×N the set of all infinite sequences of replicas T = (τ (1), τ (2), . . . ) with each τ (r) ∈ [q]N. With
the product topology this is compact and metrizable. Let M ∗ denote the set of all Borel probability
measures on [q]N×N. We will denote such measures as L ∈ M ∗ in order to distinguish them from
measures L ∈ M . Let S ∗ denote the set of all measures L ∈ M ∗ satisfying the following two
exchangeability conditions:

(i) For any measurable set A ⊆ [q]N×N and any π ∈ S∞,

L({T : (τ (1) ◦ π, τ (2) ◦ π, . . . ) ∈ A}) = L(A) .

(ii) With the same setup, L({T : (τ (π(1)), τ (π(2)), . . . ) ∈ A}) = L(A).

The R-replica cavity field functions are

G
(1)
N,R(β, c,L) =

∫
[q]N×N

ẼN,c

 1

N
ln

R∑
r=1

1

R

∑
σ∈[q]N

exp
(
−βH̃N (I, τ (r), σ)

) dL(T ) and

G
(2)
N,R(β, c,L) =

∫
[q]N×N

∞∑
K=0

πcN/2(K)

N
ln

(
R∑
r=1

1

R
exp

(
−β

K∑
k=1

δ(τ
(r)
2k−1, τ

(r)
2k )

))
dL(T ) .

Lemma A.1 For any β, c ≥ 0, N ∈ N and L ∈ S ∗, the following limits exist and determine
continuous functions on S ∗:

G̃
(1)
N (β, c,L)

def
:= lim

R→∞
G

(1)
N,R(β, c,L) and G̃

(2)
N (β, c,L)

def
:= lim

R→∞
G

(2)
N,R(β, c,L) .

We do not use the continuity in the sequel. In order to set up a general proof for both, let us define

g
(1)
I (τ) =

∑
σ∈[q]N

exp
(
−βH̃N (I, τ, σ)

)
and g

(2)
K (τ) = exp

(
−β

K∑
k=1

δ(τ2k−1, τ2k)

)
.

Note that qNe−β|I| ≤ g(1)
I ≤ qN and e−βK ≤ g(2)

K ≤ 1.
Proof: For simplicity, suppose that g : [q]N → (0,∞) is a continuous, positive function, with

bounds 0 < m ≤ g ≤ M < ∞. Given a finite set A ⊂ N, let gA(T ) =
∑
r∈A |A|−1g(τ (r)).

Define γA(T ) = ln gA(T ). This is continuous on [q]N×N for each R ∈ N. Define ΓR(L) =∫
[q]N×N γ{1,...,R}(T ) dL(T ), which is continuous on M∗. We want to show that, when restricted

to S ∗ these functions converge pointwise to a continuous limit. From this we will be able to prove
the desired result.
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Let A(R) = {1, . . . , R} and let A(R, r) = A(R) \ {r}, for r = 1, . . . , R. Then, leaving out the
explicit dependence on the argument

γA(R) −
1

R

∑
r∈A(R)

γA(R,r) =
1

R

∫ 1

0

R∑
r=1

gA(R) − gA(R,r)

(1− θ)gA(R) − θgA(R,r)
dθ .

Note that the left hand side is nonnegative by Jensen’s inequality. Direct inspection shows the
integrand in the right hand side is zero when θ = 0. Therefore, using integrating by parts, the right
hand side equals

1

R

R∑
r=1

∫ 1

0

(∫ θ1

0

(
gA(R) − gA(R,r)

(1− θ)gA(R) − θgA(R,r)

)2

dθ

)
dθ1 ≤

1

2m2R

R∑
r=1

(
gA(R) − gA(R,r)

)2
.

But a simple calculation shows that

1

R

R∑
r=1

(
gA(R) − gA(R,r)

)2
=

1

(R− 1)2

[
1

R

R∑
r=1

(
g(τ (r))− gA (R)(T )

)2
]
≤ (M −m)2

(R− 1)2
.

The key point is that this is summable, summing over R ∈ {2, 3, . . . }. Also, by exchangeability,
taking expectations shows that this gives

0 ≤ ΓR(L)− ΓR−1(L) ≤
(Mm − 1)2

2(R− 1)2
.

Since the uniform limit of continuous functions is continuous this shows that Γ = limR→∞ ΓR is
continuous.

Now for the lemma as stated there is the technicality that the functions depend on parameters,
|I| and K, and that the ratio M/m diverges as these parameters do. On the other hand, the quantity
on the right hand side above is integrable against the measures for these random parameters. More
specifically, one has integrability of (eβ|I| − 1)2 and (eβK − 1)2 against the appropriate Poisson
measures. So the dominated convergence theorem shows that the result still holds. �

Given L ∈ S , one may define LL ∈ S ∗ as follows. Suppose that (ξ, T ) is distributed according
to L. Let r1, r2, . . . be i.i.d., N-valued random variable distributed according to ξ. Then we let LL
be the marginal distribution of (τ (r1), τ (r2), . . . ).

Corollary A.2 For any L ∈ S , G̃
(i)
N (β, c,LL) = G

(i)
N (β, c,L) for i = 1, 2.

Proof: If one fixes I and K, then this follows from the weak law of large numbers for r1, r2, . . . ,
and continuity of the functions involved. This establishes convergence, pointwise for each finite |I|
and K. For random I and K one can use the dominated convergence theorem, since the functions
satisfy exponential bounds with respect to |I| and K, and these random variables are Poissonian.
�

Proof of Theorem 4.2: In view of Corollary A.2, it suffices to prove

pN (β, c) +G
(2)
N,R(β, c,L) ≤ G

(1)
N,R(β, c,L) ,
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for each L ∈ S ∗ and each R ∈ N.
In order to prove this we make yet another definition. For M ∈ N finite, let us define Ĩ to

be a sequence ((I1
k , I

2
k))
|I|
k=1 where I is still πcN distributed, and conditional on that (I1

1 , . . . , I
1
|I|)

and (I2
1 , . . . , I

2
|I|) are indepedent, with the first being uniform on {1, . . . , N} and the second being

uniform on {1, . . . ,M}. Then we define H
(1)
N (Ĩ, σ, τ) =

∑|Ĩ|
k=1 δ(σI1k , τI2k). We let G̃

(1)
N,R,M (β, c,L)

be the result of changing G
(1)
N,R,M (β, c,L) by replacing HN (I, σ, τ (r)) by H̃

(1)
N (I, σ, τ (r)). We notice

that if Ĩ happens to be such that no two numbers in (I2
1 , . . . , I

2
|I|) are the same, then the two

definitions are equal in distribution because of exchangeability of L. But conditional on |I|, this

happens with probability (1−M−1)|Ĩ| which implies

lim
M→∞

G̃
(1)
N,R,M (β, c,L) = G

(1)
N,R(β, c,L) ,

along with integrability and the dominated convergence theorem.

Similarly, let K̃ = ((K1
i ,K

2
i ))
|K̃|
i=1 be a sequence where |K̃| is πcN/2 distributed and conditional

on that (K1
1 , . . . ,K

1
|K̃|

) and (K2
1 , . . . ,K

2
|K̃|

) are all independent and uniform on {1, . . . ,M}. We

let H̃
(2)
N (K̃, τ) =

∑|K̃|
i=1 δ(τK1

i
, τK2

i
), and use this to replace

∑K
i=1 δ(τ2i−1, τ2i) in the definition of

G
(2)
N,R(β, c,L). We call the new version G̃

(2)
N,R,M (β, c,L). Then if none of the K1

i ’s and K2
i ’s are

repeated, there is no real difference from before, and this happens with probability (1−M−1)2|K̃|.
This shows

lim
M→∞

G̃
(2)
N,R,M (β, c,L) = G

(2)
N,R(β, c,L) ,

Finally, we claim that

pN (β, c) + G̃
(2)
N,R,M (β, c,L) ≤ G̃

(1)
N,R,M (β, c,L) , (28)

by arguments from Section 3. Indeed, considering (σ1, . . . , σN , τ1, . . . , τM ) as a spin configuration,
we see that the left and right are given respectively by M+N

N pM+N (β, c(i)) − M
N ln[q], for i = 1, 2,

where

c(1) =
M +N

N

[
c1N,N 0

0 c1M,M

]
and c(2) =

M +N

N

[
0 (c/2)1N,M

(c/2)1M,N 0

]
,

where 1m,n is the m×n matrix with all entries equal to 1. In particular the difference is a positive
multiple of the outer product of the vector (1, . . . , 1,−1, . . . ,−1) with the first N entries equal to
1 and the last M equal to −1. So following the proof of Corollary 3.2 one can deduce (28). �

Proof of Lemma 4.4: We will prove the formula for G
(2)
N (β, c,LM,N ), first. Let ĨM,1, ĨM,2, . . .

be chosen independently, and uniformly from {1, . . . ,M}. Using K and ĨM,1, ĨM,2, . . . , we define

the random coupling matrix Ĵ
(M,N)

∈MM (N0) such that

Ĵ
(M,N)
i,j = #{k ≤ K : ĨM,2k−1 = i , ĨM,2k = j} .

Then these variables are distributed as independent Poisson random variables all with means

cN/(2M2). Moreover, since K and ĨM,1, ĨM,2, . . . are independent of J̃
(M,N)

, this means that
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J̃
(M,N)

and Ĵ
(M,N)

are independent. Since J̃
(M,N)

has the distribution PN,c̃M,N , the sum J̃
(M,N)

+

Ĵ
(M,N)

has the distribution PN,c̃M,N+(cN/M). This justifies the desired equation. More precisely,

G
(2)
N,c (β,LM,N ) =

1

N
E

ln

qM∑
α=1

ω
β,M,J̃

(M,N) (σ(α)) exp

(
−β

K∑
k=1

δ
(
σĨM,2k−1

(α), σ̃IM,2k(α)
)) ,

where the expectation is over J̃
(M,N)

, K and ĨM,1, ĨM,2, . . . . But using Ĵ
(M,N)

this may be rewritten
as

G
(2)
N,c (β,LM,N ) =

1

N
E

ln

qM∑
α=1

ω
β,M,J̃

(M,N)

(
σ̃(α)

)
exp

−β M∑
i,j=1

Ĵ
(M,N)
ij δ

(
σ̃

(α)
i , σ̃

(α)
j

) .
Keeping track of the definition of σ(α) and also of HM (·, Ĵ

(M,N)
), we have

G
(2)
N,c (β,LM,N ) =

1

N
E

ln
∑

σ∈[q]M

ω
β,M,J̃

(M,N) (σ) exp

(
−βHM

(
σ̃, Ĵ

(M,N)
)) .

Finally, using the definition of the Boltzmann-Gibbs measure, this can be rewritten as

G
(2)
N,c (β,LM,N ) =

1

N
E

ln
∑

σ∈[q]M

1

ZN

(
β, J̃

(M,N)
) exp

(
−βHM

(
σ, J̃

(M,N)
+ Ĵ

(M,N)
))

=
1

N
E
[
lnZN

(
β, J̃

(M,N)
+ Ĵ

(M,N)
)
− lnZN

(
β, J̃

(M,N)
)]

.

Keeping track of the marginal distributions of J̃
(M,N)

and J̃
(M,N)

+ Ĵ
(M,N)

in the measure for E
does give equation for G

(2)
N (β, c,LM,N ).

The derivation of the equation for G
(1)
N (β, c,LM,N ) is similar. We leave this as an exercise for

the reader. �

A.3 Poisson-Dirichlet structures

Proof of Lemma 5.1: Using equation (20) we immediately have

E
[
exp

(
−λ
∫ ∞

0

xp dΞ(x)

)]
= exp

(
−
∫ ∞

0

(
1− e−λx

p
) d

dx
(−x−m) dx

)
= exp

(
−
∫ ∞

0

x−m
d

dx

(
−e−λx

p
)
dx

)
,

using integration by parts and the fact that (1 − e−λxp) converges to zero as x → 0 faster than
x−m diverges, as long as p > m for the boundary term at 0. (The boundary term at ∞ follows just
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because x−m converges to zero there.) Rewriting y = λxp, so that x−m = λm/py−m/p gives the
result. �

Proof of Theorem 5.2: This follows from the conjunction of two basic facts about general
Poisson processes, both of which follow easily from the moment generating functional identity
definition of Poisson processes:

• If {ξ1, ξ2, . . . } is a Poisson process with intensity Λ(dξ) on (0,∞), and (λ1, λ2, . . . ) are i.i.d.,
ρ-distributed points in (0,∞) independent of {ξ1, ξ2, . . . } then the pairs {(ξ1, λ1), (ξ2, λ2), . . . }
are a Poisson process on the quadrant (0,∞)2 with intensity measure Λ̃(dξ×dλ) = Λ(dξ)dρ(λ).

• If {(ξ1, λ1), (ξ2, λ2), . . . } is a Poisson process on (0,∞)2 with intensity measure Λ̃(dξ × dλ),
and if Φ : (0,∞)2 → (0,∞)2 is a diffeomorphism, then {Φ(ξ1, λ1),Φ(ξ2, λ2), . . . } is a Poisson
process with intensity measure Λ̃Φ defined as Λ̃Φ(A) =

∫
1A(Φ(ξ, λ)) Λ̃(dξ × dλ).

Taking the function Φ(ξ, λ) = (λξ, λ) we see that, for the case Λ = Λm,

Λ̃Φ(A) =

∫ ∞
0

(∫ ∞
0

1A(λξ, λ)
d

dξ

(
−ξ−m

)
dξ

)
dρ(λ) =

∫ ∞
0

λm
(∫ ∞

0

1A(x, λ)
d

dx

(
−x−m

)
dx

)
dρ(λ) ,

using equation (20). So Λ̃Φ(dξ × dλ) = λmΛm(dξ)dρ(λ). Note that the measure c−mλmdρ(λ) is a
probability measure. So taking the marginal of Λ̃Φ just on the first coordinate gives cmΛm(dξ) =
Λm(d(c−1ξ)), which equals the change of measure of Λm due to the mapping ξ 7→ cξ. �

Proof of Corollary 5.3: This is proved by induction, conditioning on the σ-algebra of
ξ̂
m

(L)
�L−1

(α(L−1)). More precisely, first construct the un-normalized Poisson process associated to

this normalized random partition structure, and then use Theorem 5.2. Note that to work it is
essential that m1 < m2 < · · · < mL since, in the proof of Lemma 5.1 above, one does need this
condition in order to have finite fractional moments. �

A.4 Replica Symmetry Breaking results

In this section we use an abbreviated notation in order to reduce the number of symbols needed. We
hope that the reader may follow the calculation, inferring the translation needed from the context.

To calculate G
(2)
N , the easier of the two parts of the cavity field functional, we condition on {ξ1

α1
}

and on {τ1
α1
}. Since the τ2

α’s and Xα’s are i.i.d., we do not condition on them. Then we note that

P(τα,2k−1 = τα,2k | {τ1
α1,k}) = P(X1 = X2 = 1)1{τ1

α1,2k−1 = τ1
α1,2k}+ [1−P(X1 = X2 = 1)] · 1

q
.

This implies that

E
[
e−m2βδ(τα,2k−1,τα,2k)

∣∣ {τ1
α1
}
]

= p2e−m2βδ(τ
1
α1,2k−1,τ

1
α1,2k

) + (1− p2)

(
1− 1− e−m2β

q

)
.

For
λα = e−βδ(τα,2k−1,τα,2k) ,
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we have that
{λαξα}

d
= {λ0ξα} ,

where

λ0 = E
[
E
[
e−m2βδ(τα,2k−1,τα,2k)

∣∣ {τ1
α1
}
]m1/m2

]1/m1

.

So we get in general

lnλ0 =
1

m1
ln

[(
1− 1

q

)(
1− (1− p2)(1− e−m2β)

q

)m1/m2

+
1

q

(
1−

[
p2 +

1− p2

q

] (
1− e−m2β

))m1/m2
]

Because the spin fields are independent for different values of k, the effect of the L is just to multiply
this final answer. Therefore, taking the expectation of that, and dividing by N gives

G
(2)
N =

c

m1
ln

[(
1− 1

q

)(
1− (1− p2)(1− e−m2β)

q

)m1/m2

+
1

q

(
1−

[
p2 +

1− p2

q

] (
1− e−m2β

))m1/m2
]

To get the replica symmetric ansatz, we use the 2-level RPC and take the limits m2 ↑ 1 and
m1 ↓ 0. Taking m2 ↑ 1, gives

lnλ0 =
1

m1
ln

[(
1− 1

q

)(
1− (1− p2)(1− e−β)

q

)m1

+
1

q

(
1−

[
p2 +

1− p2

q

] (
1− e−β

))m1
]
.

Then taking m1 ↓ 0 gives

lnλ0 =

(
1− 1

q

)
ln

(
1− (1− p2)(1− e−β)

q

)
+

1

q
ln

(
1−

[
p2 +

1− p2

q

] (
1− e−β

))
.

Thus the replica symmetric value of the first term is

G
(2)
N =

c

2

(
1− 1

q

)
ln

(
1− (1− p2)(1− e−β)

q

)
+

c

2q
ln

(
1−

[
p2 +

1− p2

q

] (
1− e−β

))
. (29)

The more complicated term is G
(1)
N . Conditioning on the spins at the first level {τ1

α}, and all
the K(i) values, we get (using a notation which is clear from the context)

E[λm2
α | {K(i)}Ni=1, {τ1

α,i,k}α,i,k] =
N∏
i=1

E{Xi,k},{τ
2
i,k}

 q∑
σi=1

K(i)∏
k=1

[
e−βδ(σi,τi,k)

]m2
 ,

where the τ2
i,k are all i.i.d., uniform on {1, . . . , q}, and

τi,k = Xi,kτ
1
i,k + (1−Xi,k)τ2

i,k .

The Xi,k’s are i.i.d., Bernoulli-p random variables. Since the formulas are identically distributed
for different i’s and since there are N such i’s (canceling the division by N), we get the formula

G
(1)
N =

1

m1
Eκ lnE{τ

1
k}

E{Xk},{τ2
k}

[(
q∑

σ=1

κ∏
k=1

[
e−βδ(σ,τk)

])m2
]m1/m2

 ,
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where once again κ is a Poisson random variable with mean c, and now {τ1
k} and {τ2

k} are all i.i.d.,
uniform random variables on {1, . . . , q}, and {Xk} are all i.i.d., Bernoulli random variables with
mean p, and τk = Xkτ

1
k + (1−Xk)τ2

k for each k.
We now take m2 ↑ 1 and m1 ↓ 0. Taking m2 ↑ 1 gives

1

m1
Eκ lnE{τ

1
k}

[
E{Xk},{τ

2
k}

[
q∑

σ=1

κ∏
k=1

[
e−βδ(σ,τk)

]]m1
]
,

which can be rewritten

1

m1
Eκ lnE{τ

1
k}

[(
q∑

σ=1

κ∏
k=1

EXk,τ
2
k

[
e−βδ(σ,τk)

])m1
]
.

But

EXk,τ
2
k

[
e−βδ(σ,τk)

]
= pe−βδ(σ,τ

1
k) + (1− p)

(
1− 1− e−β

q

)
.

Using this and taking the limit m1 ↓ 0 gives

G
(1)
N = Eκ,{τ

1
k}

[
ln

(
q∑

σ=1

κ∏
k=1

(
pe−βδ(σ,τ

1
k) + (1− p)

(
1− 1− e−β

q

)))]
.

Let us now rewrite this in a manner which is appropriate for taking derivatives at p = 0. We
can write e−βδ(σ,τ

1
k) = 1− (1− e−β)δ(σ, τ1

k ). Since the average value of δ(σ, τ1
k ) is 1/q, we may also

incorporate that:

e−βδ(σ,τ
1
k) = 1− 1− e−β

q
− (1− e−β)(δ(σ, τ1

k )− q−1) .

Then we may rewrite EXk,τ2
k

[
e−βδ(σ,τk)

]
as(

1− 1− e−β

q

)
− p(1− e−β)(δ(σ, τ1

k )− q−1) .

The formula for G
(1)
N is simpler if we introduce a new variable, x = (1− e−β)/(q− e−β). Therefore,

we obtain

G
(1)
N = ln q + c ln

(
1− 1− e−β

q

)
+ Eκ,{τ

1
k}

[
lnEσ

[
κ∏
k=1

(
1− px (qδ(σ, τ1

k )− 1)
)]] ∣∣∣∣∣

x= 1−e−β
q−(1−e−β)

.

(30)
Now we want to consider this formula as a function of p perturbatively near 0. We say that the

p = 0 RS ansatz is “stable to RS perturbations” if it is a local minimizer of the extended variational
principle in the set of RS ansatze.

Starting from the simpler term, (29), we rewrite G
(2)
N as

c

2
ln

(
1− 1− e−β

q

)
+
c(q − 1)

2q
ln

(
1 +

p2(1− e−β)

q − (1− e−β)

)
+

c

2q
ln

(
1− (q − 1)(1− e−β)p2

q − (1− e−β)

)
.
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Using x = (1− e−β)/(q − e−β) this is simpler:

G
(2)
N =

c

2
ln

(
1− 1− e−β

q

)
+

c

2q

[
(q − 1) ln(1 + p2x) + ln(1− (q − 1)p2x)

] ∣∣∣∣
x= 1−e−β

q−(1−e−β)

. (31)

This is an even function of p, so only even powers will appear. Taylor expansion shows that

(q − 1) ln(1 + p2x) + ln(1− (q − 1)p2x) = −1

2
q(q − 1)p4x2 .

Therefore,

G
(2)
N =

c

2
ln

(
1− 1− e−β

q

)
− c(q − 1)p4x2

4
+O(p6)

∣∣∣
x= 1−e−β

q−(1−e−β)

.

This gives
d4

dp4
G

(2)
N

∣∣∣∣
p=0

= −6c(q − 1)x2
∣∣∣
x= 1−e−β

q−(1−e−β)

. (32)

Now turning to the more difficult term, let us start with (30). Let us write f(σ, τ) = (qδ(σ, τ)−1).
Then we have

G
(1)
N = ln q + c ln

(
1− 1− e−β

q

)
+ Eκ,{τ

1
k}

[
lnEσ

[
κ∏
k=1

(
1− pxf(σ, τ1

k )
)]] ∣∣∣∣∣

x= 1−e−β
q−(1−e−β)

. (33)

As usual, we may interpret the function

Eσ
[

κ∏
k=1

(
1− pxf(σ, τ1

k )
)]

as a cumulant generating function. But the random variable is multi-linear in p. Therefore, when
expanding in p, we have to take account of these terms. Also, notice that Eσ[f(σ, τ)] = Eτ [f(σ, τ)] =
0 as long as the expectations are with respect to the uniform measure. Because of this, various
terms vanish either in the expectation over Eσ or in the expectation over E{τ1

k}.
For instance, using the fact that Eσ[f(σ, τ)] = 0, we see that the first derivative in p equals

0. Moreover, since each factor is linear in p, in taking multiple derivatives (of a single copy of the
product) means we cannot repeat the derivative of any factor. So we obtain

d2

dp2
Eσ
[

κ∏
k=1

(
1− pxf(σ, τ1

k )
)]

= x2
κ∑

j,k=1
j 6=k

Eσ[f(σ, τ1
j )f(σ, τ1

k )] .

But then taking the expectation over E{τ1
k} gives 0 because since j 6= k, we have

E{τ
1
k}Eσ[f(σ, τ1

j )f(σ, τ1
k )] = Eσ

[
Eτ

1
j [f(σ, τ1

j )] · Eτ
1
k [f(σ, τ1

k )]
]

= 0 .
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Continuing, we may easily see that the third derivative is again 0 since Eσ[f(σ, τ)] = 0. Then, the
next simplest term arises from

d4

dp4
Eσ
[

κ∏
k=1

(
1− pxf(σ, τ1

k )
)]

= x4
κ∑

j,k,`,m=1
j 6=k 6=` 6=m

Eσ[f(σ, τ1
j )f(σ, τ1

k )f(σ, τ1
` )f(σ, τ1

m)]

− 3x4

 κ∑
j,k=1
j 6=k

Eσ[f(σ, τ1
j )f(σ, τ1

k )]


2

.

We can rewrite this by expanding the square of the sum, and using replicated spin variables for
products of expectations:

d4

dp4
Eσ
[

κ∏
k=1

(
1− pxf(σ, τ1

k )
)]

= x4
κ∑

j,k,`,m=1
j 6=k 6=` 6=m

Eσ[f(σ, τ1
j )f(σ, τ1

k )f(σ, τ1
` )f(σ, τ1

m)]

− 3x4
κ∑

j,k=1
j 6=k

κ∑
`,m=1
` 6=m

Eσ,σ
′
[f(σ, τ1

j )f(σ, τ1
k )f(σ′, τ1

` )f(σ′, τ1
m)] .

Any distinct terms for j, k, `,m vanish in the expectation over E{τ1
k}. Therefore all must be paired.

That means that the first summand vanishes entirely. In the second summand, we require (`,m) =
(j, k) or (`,m) = (k, j). These two possibilities give an extra factor of 2. Hence, we obtain

d4

dp4
G

(1)
N

∣∣∣∣
p=0

= −6x4 Eκ,{τ
1
k}

κ∑
j,k=1
j 6=k

(
Eσ[f(σ, τ1

j )f(σ, τ1
k )]
)2 ∣∣∣∣∣

x= 1−e−β
q−(1−e−β)

.

A calculation gives

Eσ[f(σ, τ1
j )f(σ, τ1

k )] =

{
−1 if τ1

j 6= τ1
k ,

(q − 1) if τ1
j = τ1

k .

Using the i.i.d., uniform distribution on {τ1
k} gives P{τ1

j = τ1
k} = 1/q. Therefore,

E{τ
1
k}Eσ[f(σ, τ1

j )f(σ, τ1
k )] = 0 ,

as we claimed before. But now we also have(
Eσ[f(σ, τ1

j )f(σ, τ1
k )]
)2

=

{
1 if τ1

j 6= τ1
k ,

(q − 1)2 if τ1
j = τ1

k ,

which gives

E{τ
1
k}
[(
Eσ[f(σ, τ1

j )f(σ, τ1
k )]
)2]

= q − 1 .

Therefore, also using the fact that Eκ[#{(j, k) ∈ {1, . . . , κ}2 : j 6= k}] equals Eκ[κ(κ− 1)] = c2, we
obtain

d4

dp4
G

(1)
N

∣∣∣∣
p=0

= −6c2(q − 1)x4
∣∣∣
x= 1−e−β

q−(1−e−β)

. (34)
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[21] M. Mézard, G. Parisi. The Bethe lattice spin glass revisited. The European Physical Journal
B, 20(2), 217–233 (2001).
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