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Introduction

Empirical studies show that the topology of real-world
networks, such as the Internet, social networks and bio-
logical networks, have some remarkable similarities [3]:
• Scale-free phenomenon:

The degree sequence of many of these networks
obeys a power law. This means that, when Di is
the degree of vertex i,

P [Di = k] ∼ k−τ ,
for some τ > 1;
• Small-world phenomenon:

Distances in these networks are small compared to
the size of the network.

Various random graph models have been proposed to
model such real-world networks. We shall focus on:

• the preferential attachment model (PAM );

• the configuration model (CM ).

Random graph models

In the PAM the graph grows in time. At each time epoch
t a new vertex arrives with a fixed number m edges at-
tached to it. Each of the end points of these edges con-
nect to a vertex i with probability, conditionally on the
graph at time t−1 and independently of each other, pro-
portional to Di(t − 1) + δ, where Di(t) is the degree of
vertex i at time t and the parameter δ > −m is intro-
duced to control the power-law exponent. It turns out
that the degree sequence in the resulting graph obeys a
power law with exponent

τ = 3 + δ/m,

when the number of vertices tends to infinity [2]. Thus,
the PAM gives a possible explanation for the occurrence
of power laws in real-world networks.

For fixed t, the number of half-edges attached to the t
vertices in the CM are chosen in advance according to a
power-law distribution D. The graph is then constructed
by pairing the half-edges at random.

It is predicted by physicists that distances in these two
models should behave similarly.

Results on distances

All results below holdwith high probability, which means
that the probability the statements are true tends to 1
when the number of vertices tends to∞.

In the PAM, for m ≥ 1 and δ > 0, i.e. for τ > 3, the

diameter of the graph at time t, denoted by diam(t), sat-
isfies

c1 log t ≤ diam(t) ≤ c2 log t,

for some constants c1, c2 > 0 [1]. A similar result holds
when τ > 3 in the CM [2]. For both models this result can
be generalized to bounds on average distances, i.e. the
distance between two uniformly chosen connected ver-
tices [1, 2].

In many real-world networks exponents τ ∈ (2, 3) have
been reported [3]. When m ≥ 2 and δ ∈ (−m, 0) in the
PAM, the diameter satisfies

c3 log log t ≤ diam(t) ≤ c4 log log t,

for some constants c3, c4 > 0 [1]. The diameter is an
upper bound on the average distance, but unfortunately
a lower bound on average distances for the PAM is not
known. For m = 1, when the resulting graph is a
tree, typical distances are of order log t [1]. In the CM,
with τ ∈ (2, 3), average distances are also of the order
log log t, but the size of the diameter is not necessarily
so. When P [D = 1] + P [D = 2] > 0 and P [D = 1] < 1,
the diameter is of order log t instead [2].

Conclusion

The small-world phenomenon is quantified for two ran-
dom graph models. As shown, the predicted universal-
ity of distances in power-law random graphs does not al-
ways hold for the diameter, since the diameter depends
sensitively on the details of the graph. We provide evi-
dence that it does hold for average distances, but some
results are still missing and it would be of interest to fur-
ther investigate this.
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