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SUMMARY

Spin models on random graphs

In the past decades complex networks and their behavior have attracted much attention.
In the real world many of such networks can be found, for instance as social, information,
technological and biological networks. An interesting property that many of them share
is that they are scale free. Such networks have many nodes with a moderate amount of
links, but also a significant amount of nodes with a very high number of links. The latter
type of nodes are called hubs and play an important role in the behavior of the network.
To model scale free networks, we use power-law random graphs. This means that their
degree sequences obey a power law, i.e., the fraction of vertices that have k neighbors is
proportional to k−τ for some τ > 1.

Not only the structure of these networks is interesting, also the behavior of processes
living on these networks is a fascinating subject. Processes one can think of are opinion
formation, the spread of information and the spread of viruses. It is especially interest-
ing if these processes undergo a so-called phase transition, i.e., a minor change in the
circumstances suddenly results in completely different behavior. Hubs in scale free net-
works again have a large influence on processes living on them. The relation between
the structure of the network and processes living on the network is the main topic of this
thesis.

We focus on spin models, i.e., Ising and Potts models. In physics, these are traditionally
used as simple models to study magnetism. When studied on a random graph, the spins
can, for example, be considered as opinions. In that case the ferromagnetic or antiferro-
magnetic interactions can be seen as the tendency of two connected persons in a social
network to agree or disagree, respectively.

In this thesis we study two models: the ferromagnetic Ising model on power-law ran-
dom graphs and the antiferromagnetic Potts model on the Erdős-Rényi random graph.
For the first model we derive an explicit formula for the thermodynamic limit of the pres-
sure, generalizing a result of Dembo and Montanari to random graphs with power-law
exponent τ > 2, for which the variance of degrees is potentially infinite. We furthermore
identify the thermodynamic limit of the magnetization, internal energy and susceptibility.

For this same model, we also study the phase transition. We identify the critical tem-
perature and compute the critical exponents of the magnetization and susceptibility. These
exponents are universal in the sense that they only depend on the power-law exponent τ
and not on any other detail of the degree distribution.

The proofs rely on the locally tree-like structure of the random graph. This means that
the local neighborhood of a randomly chosen vertex behaves like a branching process.
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Correlation inequalities are used to show that it suffices to study the behavior of the
Ising model on these branching processes to obtain the results for the random graph.
To compute the critical temperature and critical exponents we derive upper and lower
bounds on the magnetization and susceptibility. These bounds are essentially Taylor
approximations, but for power-law exponents τ≤ 5 a more detailed analysis is necessary.

We also study the case where the power-law exponent τ ∈ (1,2) for which the mean
degree is infinite and the graph is no longer locally tree-like. We can, however, still say
something about the magnetization of this model.

For the antiferromagnetic Potts model we use an interpolation scheme to show that
the thermodynamic limit exists. For this model the correlation inequalities do not hold,
thus making it more difficult to study. We derive an extended variational principle and
use to it give upper bounds on the pressure. Furthermore, we use a constrained second-
moment method to show that the high-temperature solution is correct for high enough
temperature. We also show that this solution cannot be correct for low temperatures by
showing that the entropy becomes negative if it were to be correct, thus identifying a
phase transition.
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1
INTRODUCTION

Over one billion people use Facebook each month and over 140 billion friendship connec-
tions have been made between them [49]. Almost 10 billion electronic devices are able
to connect to the Internet [66] exceeding the number of living people. Airports around
the world are connected with thousands of flights between them every day [62]. These
are just three examples of huge complex networks, a set of nodes with links between them,
that can be found in the real world, but many more exist. Many things are going on in
such networks. For example, people influence each other in social networks, information
is spread via the Internet [75], and viruses spread globally via the airline network [95].
This thesis studies mathematical models for such complex networks and processes living
on them.

1.1 Examples of complex networks

In [87, 88], Newman gives extensive overviews of many complex networks. He divides
them into four categories: social, information, technological and biological networks.
Facebook is just one example of a social network, but certainly not the only example in
this category. A friendship network in the offline world is also a social network, although
this is a bit harder to define: it is not always clear when two people should be considered
to be friends and even two persons might disagree themselves whether they should be
considered friends. A more well-defined model is the handshake network in which two
persons are linked when they ever shook hands. Social networks can also be seen in a
broader sense, for example an innovation network with links between producers, users,
and governmental bodies [55].

An example of an information network is the World Wide Web (WWW), not to be
confused with the Internet. It consists of web pages with so-called hyperlinks between
them. Scientists cite work of others, giving rise to a citation network of articles.

The Internet [50] is a technological network. It is a network of networks of computers
and other devices connected mainly with physical cables, although also wireless connec-
tions have become common recently. Other examples of technological networks include
the power grid [7] and road and rail networks.

Not only man-made networks can be thought of, also in nature networks can be
identified. Examples of such biological networks include protein-protein interactions [70],
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metabolic networks [51] and neural networks of the brain [101].

1.2 Properties of complex networks

Although networks have different origins, many of them have similar properties. For
instance, many of them show scale free behavior [87]. This means that there is not such
a thing as a typical node in the network, but the network is highly heterogeneous. For
example, many people only have a moderate amount of friends but a significant amount
of people have a huge number of friends. In fact, the number of links nodes have, called
the degree, can be found on all scales in such networks. The high degree vertices in a
network are called hubs and play an important role in the behavior of these networks.
This heterogeneity is different from, e.g., the heights of men in a certain country. These
heights are often quite close to the average and large deviations from this average are
uncommon.

The second property many networks share is that they are small worlds: if you select
two nodes at random from the network the number of links you have to follow to go
from one node to the other is very small, certainly compared to the size of the network.
For example, the average distance on Facebook in May 2011 was estimated to be just
4.74 [12].

The scale free and small world properties have a large influence on the behavior of
processes living on these networks. They make it possible for example for information,
but also viruses, to spread very fast through the network. Also the hubs in the network
are much more influential than other vertices in opinion formation.

This makes the behavior of processes living on these networks a fascinating subject.
Especially if they undergo a so-called phase transition, i.e., a minor change in the cir-
cumstances suddenly results in completely different behavior. Examples of such phase
transitions include the sudden East European revolution in 1989 [73] and the unusual
swine flu outbreak in 2009 [26].

1.3 Random graphs

To better understand the behavior of networks we try to model them mathematically with
random graphs. These consist of a set of vertices representing the nodes of a network and
edges placed randomly between them according to some specified rules representing the
links in the network. Many models have been proposed how to exactly construct such
random graphs.

The simplest way of constructing a random graph was proposed by Erdős and Rényi
in [46]: start with a number of vertices and then connect each pair of vertices indepen-
dently with a certain predetermined probability. Although this model seems very simple,
it shows very rich behavior [46, 93, 9]. Unfortunately, however, this model does not
show the scale-free behavior that is observed in real-world networks.

To overcome this, many alternative random graph models have been proposed. Ex-
amples include the inhomogeneous random graph, where vertices are assigned a weight
and edges are connected with a probability that depends on these weights, see [24] for an
extensive overview of such models. By choosing the weights properly, scale-free behav-
ior can be obtained. Another option is to study the configuration model, first introduced
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in [22]. In this model, the degree distribution is an input to the model: every vertex
gets assigned a random number of half-edges according to this distribution and these
half-edges are then paired up uniformly at random. In order to get a scale-free graph
we choose a power-law degree distribution, i.e., the probability that a randomly selected
vertex has degree k is proportional to k−τ for some τ > 1.

The Erdős-Rényi random graph, the inhomogeneous random graph and the configura-
tion model are introduced more formally in Chapter 2. Many more random graph models
have been proposed, see, e.g., [23, 63, 69] for extensive reviews on random graphs and
their properties. In this thesis, however, we focus on the three above-mentioned models.

1.4 Spin models

To study processes on networks many models have been proposed, see [42] for an
overview of models studied in the physics literature. A canonical model to study co-
operative behavior is the Ising model, see [89, 90, 91] for its history. In this model every
vertex gets assigned a spin which can be either in the up position or in the down position.
Originally, the Ising model on a lattice was proposed as a simple model to study the be-
havior of magnetic materials such as iron. When this model is studied on random graphs,
a spin can be thought of, for example, as the opinion of an individual. It is more likely
that a certain person has the same opinion as his friends then that his opinion differs.
This is what we call a ferromagnetic interaction: the spins of neighbors in the graph tend
to align.

Ising models have for example been proposed to study integration of immigrants into
society [29, 30, 31] and the spread of innovations [82]. Also the brain is suggested to
show behavior similar to that of the Ising model [53].

When more than two opinions are possible, the model to study is the Potts model.
Here, spins can take q ≥ 2 values, usually called colors. This name comes from the graph
coloring problem where the objective is to assign colors to the vertices of a graph in such
a way that no two vertices that are connected by an edge have the same color. This
is an extreme case of spins having the tendency not to align, or an antiferromagnetic
interaction. In a social context an antiferromagnetic interaction could mean for example
that people prefer to have an opinion different from the persons they dislike.

In the physics literature, the critical behavior of many processes on complex networks
has been studied, see [42] for an overview. Many of these results have not been math-
ematically rigorously proved. One of the few models for which rigorous results have
been obtained is the contact process [25, 83], where the predictions of physicists, in
fact, turned out not to be correct. A mathematical treatment of other models is therefore
necessary.

1.5 Contributions and overview

In Part I of this thesis we focus on the ferromagnetic Ising model on power-law random
graphs and in Part II on the antiferromagnetic Potts model on the Erdős-Rényi random
graph. First we define the random graph models in Chapter 2 and the spin models and
the associated thermodynamics in Chapter 3.
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The first part starts with Chapters 4 and 5, which are based on [38]. In these chapters
we derive an explicit formula for the thermodynamic limit of the pressure, generalizing
the result of Dembo and Montanari in [34] to random graphs with power-law exponent
τ > 2. For such graphs the variance of the degrees is potentially infinite, a case which
is not covered in [34]. Also the thermodynamic limits of the magnetization, internal
energy and susceptibility are identified. The proofs rely on the locally tree-like structure
of the random graph. This means that the local neighborhood of a randomly chosen
vertex behaves like a branching process. Correlation inequalities are used to show that it
suffices to study the behavior of the Ising model on these branching processes to obtain
the results for the random graph.

As an intermezzo, we present new results in Chapter 6 on what happens when the
mean degree is infinite, i.e., when the power-law exponent τ ∈ (1,2). In this case, the
graph is not locally-tree like anymore. Still we can say something about the magnetiza-
tion in this model.

Chapters 7, 8 and 9 are based on [39]. In these chapters we study the phase transition
for the case where τ > 2. We identify the critical temperature in Chapter 7 and compute
the critical exponents β and δ describing the critical behavior of the magnetization in
Chapter 8 and the critical exponent γ describing the critical behavior of the susceptibility
in Chapter 9.

To compute the critical temperature and critical exponents we derive upper and lower
bounds on the magnetization and susceptibility. These bounds are essentially Taylor
approximations, but for power-law exponents τ≤ 5 a more detailed analysis is necessary.

In Part II we turn to the antiferromagnetic Potts model on the Erdős-Rényi random
graph. For the antiferromagnet, the correlation inequalities are no longer valid, making
this model much harder to analyze. Instead, we use an interpolation scheme to show that
the thermodynamic limit of the pressure exists in Chapter 10, which is based on [27]. In
Chapter 11, also based on [27], we derive an extended variational principle and use this to
give two upper bounds on the pressure: the high-temperature solution and the replica-
symmetric solution. Finally, in Chapter 12, which is based on the newer version [28],
we employ a constrained second-moment method to show that the high-temperature
solution is indeed correct for high enough temperatures. We also prove that this solution
cannot be correct for low temperatures by showing that the entropy becomes negative if
it were to be correct, thus identifying a phase transition.
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RANDOM GRAPHS

In this chapter we introduce three examples of random graph models: the Erdős-Rényi
random graph, the inhomogeneous random graph and the configuration model (CM). For
an extensive overview of properties of these, and other, random graph models, see [63].

2.1 Erdős-Rényi random graphs

Fix p ∈ [0,1]. Then, the Erdős-Rényi random graph sequence (GER
N (p))N≥1 is constructed

as follows. The vertex set of GER
N (p) is given by VN = [N] ≡ {1, . . . , N}. For every pair

i, j ∈ [N], i 6= j, the edge {i, j} ∈ EN with probability p and is not in the edge set with
probability 1− p.

Often, we choose p = c/N . In this case, the degree of a random vertex in the graph
has distribution Bin(N −1, c/N), which converges to a Poisson(c) random variable in the
limit N →∞.

The above construction is due to Gilbert [56]. This model differs slightly from the
model introduced by Erdős and Rényi in [46]where the graph is constructed by randomly
selecting pN edges from the possible

�N
2

�

edges. Hence, the number of edges in their
model is fixed instead of binomial as in our setting.

A third version of the Erdős-Rényi random graph is constructed as follows. Let
(Ji, j)i, j∈[N] be i.i.d. Poisson random variables with parameter c/2N . Then, the number of
edges between vertices i and j is Ji, j + J j,i for i 6= j and Ji,i for i = j. We denote the re-
sulting graph by GERP

N (c)). This construction might not produce a simple graph, because
self-loops and multiple edges might occur. We can explicitly compute the probability that
the graph is simple:

P[GERP
N (c) is simple] = P[no self-loops]P[no multiple edges]

= P[no self-loops at vertex 1]NP[at most 1 edge between vertices 1 and 2]N(N−1)/2

= e−
c

2N
N
�

e−
c
N +

c

N
e−

c
N

�N(N−1)/2
−→ e−c/2−c2/4, (2.1)

for N → ∞. It can in fact be shown that the number of self-loops and multiple edges
converge to independent Poisson random variables with parameters c/2 and c2/4, re-
spectively. Hence, the number of self-loops and multiple edges will be OP(1).
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It is this last model that we use in Part II. It will become clear there, why this is useful.

2.2 Inhomogeneous random graphs

A natural way to make the graph more inhomogeneous is to give different weights to the
vertices in the graph and then conditionally on these weights connect a pair of vertices
with a probability depending on these weights, see [24] for results on a very general
setting of such models. We focus on the generalized random graph which is constructed as
follows. Let the weights (Wi)i∈[N] be a sequence of independent and identically distributed
(i.i.d.) random variables with some distribution W . Then, conditionally on these weights,
the probability that the edge {i, j} is in the edge set is equal to

pi j =
WiWj

WiWj +
∑

k∈[N]Wk
. (2.2)

When these weights are chosen such that they obey a power law with exponent τ, then
also the degrees obey a power law with this exponent [63].

2.3 Configuration model

In the configuration model an undirected random graph with N vertices is constructed
as follows. Let (Di)i∈[N] be a sequence of i.i.d. random variables with distribution D for
some distribution D on the nonnegative integers. Let vertex i ∈ [N] be a vertex with Di

half-edges, also called stubs, attached to it, i.e., vertex i has degree Di . Let LN =
∑N

i=1 Di
be the total degree, which we assume to be even in order to be able to construct a graph.
When LN is odd we increase the degree of DN by 1. For N large, this will hardly change
the results and we therefore ignore this effect.

Now connect one of the half-edges uniformly at random to one of the remaining
LN − 1 half-edges. Repeat this procedure until all half-edges have been connected. We
denote the resulting graph by GCM

N

�

�

Di
�

i∈[N]

�

.
Note that the above construction will not necessarily result in a simple graph. Both

self-loops and multiple edges may occur. When E[D2] < ∞, the probability that the
graph is simple can be explicitly calculated in the limit N →∞ [63]:

P
�

GCM
N

�

�

Di
�

i∈[N]

�

is simple
�

−→ e−ν/2−ν
2/4, (2.3)

where

ν =
E[D(D− 1)]

E[D]
. (2.4)

Note that this is the same as for the Poissonian Erdős-Rényi random graph for which
ν = c. In fact the number of self-loops and multiple edges, in the limit N →∞, converge
in distribution to independent Poisson random variables with means ν/2 and ν2/4, re-
spectively.

Two ways to get a simple graph are to delete all loops and multiple edges, this model
is also called the erased configuration model, and to perform the configuration model
until it produces a simple graph, which is also called the repeated configuration model.
For the latter, only a finite number of tries is necessary with probability 1 when E[D2]<
∞.
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2.4 Degree distributions

Let the random variable D have distribution P = (pk)k≥1, i.e., P[D = k] = pk, for k =
1,2, . . .. We define its forward degree distribution by

ρk =
(k+ 1)pk+1

E[D]
, (2.5)

where we assume that E[D] <∞. Let K be a random variable with P[K = k] = ρk and
write ν = E[K] = E[D(D−1)]/E[D]. Moreover, for a probability distribution (qk)k≥0 on
the non-negative integers, we write q≥k =

∑

`≥k q`.
In Part I of this thesis we need to make assumptions on the degree distribution. The

first assumption needed in Chapters 4 and 5 is that the degree distribution has strongly
finite mean, which is defined as follows:

Definition 2.1 (Strongly finite mean degree distribution). We say that the degree dis-
tribution P has strongly finite mean when there exist constants τ > 2 and Cp > 0 such
that

p≥k ≤ Cpk−(τ−1). (2.6)

For technical reasons, we assume in Chapters 4 and 5, without loss of generality, that
τ ∈ (2, 3). Note that all distributions P where

p≥k = Cpk−(τ−1)L(k), (2.7)

for Cp > 0,τ > 2 and some slowly varying function L(k), have strongly finite mean,
because by Potter’s theorem [52, Lemma 2, p.277] any slowly varying function L(k) can
be bounded above and below by an arbitrary small power of k. Also distributions which
have a lighter tail than a power law, e.g., the Poisson distribution, have strongly finite
mean.

In Chapters 8 and 9 we need to be more precise about the degree distribution. We
pay special attention to the case where the degree distribution precisely obeys a power
law as defined in the following definition. Our results turn out to depend sensitively on
the exact value of the power-law exponent.

Definition 2.2 (Power law). We say that the distribution P = (pk)k≥1 obeys a power law
with exponent τ when there exist constants Cp ≥ cp > 0 such that, for all k = 1,2, . . .,

cpk−(τ−1) ≤ p≥k ≤ Cpk−(τ−1). (2.8)

2.5 Local tree-likeness

In Part I we often assume that the graph sequence is locally tree-like and uniformly sparse.
We now define these notions formally.

The random rooted tree T (D, K ,`) is a branching process with ` generations, where
the root offspring is distributed as D and the vertices in each next generation have off-
springs that are independent of the root offspring and are i.i.d. copies of the random
variable K . We write T (K ,`) when the offspring at the root has the same distribution as
K .



8 RANDOM GRAPHS

We write that an eventA holds almost surely (a.s.) if P[A ] = 1. The ball of radius r
around vertex i, Bi(r), is defined as the graph induced by the vertices at graph distance at
most r from vertex i. For two rooted trees T1 and T2, we write that T1 ' T2, when there
exists a bijective map from the vertices of T1 to those of T2 that preserves the adjacency
relations.

Definition 2.3 (Local convergence to homogeneous random trees). Let PN denote the
law induced on the ball Bi(t) in GN centered at a uniformly chosen vertex i ∈ [N]. We say
that the graph sequence (GN )N≥1 is locally tree-like with asymptotic degree distributed as
D when, for any rooted tree T with t generations

lim
N→∞

PN[Bi(t)' T ] = P[T (D, K , t)' T ]. (2.9)

Note that this implies that the degree of a uniformly chosen vertex of the graph has
an asymptotic degree distributed as D.

Definition 2.4 (Uniform sparsity). We say that the graph sequence (GN )N≥1 is uniformly
sparse when, a.s.,

lim
`→∞

limsup
N→∞

1

N

∑

i∈[N]

Di1{Di≥`} = 0, (2.10)

where Di is the degree of vertex i and 1A denotes the indicator of the eventA .

Note that uniform sparsity follows if 1
N

∑

i∈[N] Di → E[D] a.s., by the weak con-
vergence of the degree of a uniform vertex. An immediate consequence of the local
convergence and the uniform sparsity condition is, that, a.s.,

lim
N→∞

|EN |
N
= lim

N→∞

1

2N

∑

i∈[N]

∞
∑

k=1

k1{Di=k}

=
1

2
lim
`→∞

lim
N→∞

� `−1
∑

k=1

k

∑

i∈[N] 1{Di=k}

N
+

1

N

∑

i∈[N]

Di1{Di≥`}

�

=
1

2
lim
`→∞

`−1
∑

k=1

kPk = E[D]/2<∞. (2.11)

The Erdős-Rényi random graph, the configuration model and the inhomogeneous
random graph all produce locally tree-like and uniformly sparse graph sequences. For
the first two models this is proved in [35]. This proof can be adapted for the last model.

It is important to note, however, that random trees, e.g., the random tree T (D, K ,`),
is not locally tree-like according to the definition above. This is because when selecting
a random vertex from a (finite) tree, it is very likely that this is a vertex close to the
boundary. This, for example, means that in the local neighborhood of a randomly selected
vertex many branches of the tree will die out very soon.

2.6 Giant component

One immediate result that can be obtained from the local tree-likeness and the uniform
sparsity is the size of the largest connected component, denoted by Cmax:
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Theorem 2.5 (Size of the giant component). Assume that the random graph sequence
(GN )N≥1 is locally tree-like with asymptotic degree distribution P and is uniformly sparse.
Let D have distribution P and let θ be the survival probability of the tree T (D, K ,∞), i.e.,

θ = P[|T (D, K ,∞)|=∞]. (2.12)

Then,
|Cmax|

N
p
−→ θ . (2.13)

This theorem was proved in [68]. It is well known that θ > 0 if and only if (iff)
ν > 1. Hence, there is a giant component, i.e., a connected component of size Θ(N) in
the graph iff ν > 1.

2.7 Degree properties

We now prove some properties of degree sequences that obey a power-law. We first show
that when the degree distribution obeys a power law, also the forward degree distribution
obeys a power law, where the power-law exponent is one less:

Lemma 2.6 (Tail probabilities of (ρk)k≥0). Assume that (2.8) holds for some τ > 2. Then,
for the forward degree distribution defined in (2.5), there exist 0 < cρ ≤ Cρ such that, for
all k ≥ 1,

cρk−(τ−2) ≤ ρ≥k ≤ Cρk−(τ−2). (2.14)

Proof. The lower bound follows directly from the fact that ρ≥k ≥ (k + 1)p≥k+1/E[D],
and (2.8). For the upper bound, we note that for any probability distribution (qk)k≥0 on
the non-negative integers, we have the partial summation identity

∑

k≥0

qk f (k) = f (0) +
∑

`≥1

q≥`[ f (`)− f (`− 1)], (2.15)

provided that either f (k)q≥k → 0 as k → ∞ or k 7→ f (k) is either non-decreasing or
non-increasing. Indeed,

∑

k≥0

qk f (k) = f (0) +
∑

k≥0

qk[ f (k)− f (0)] = f (0) +
∑

k≥0

qk

k
∑

`=1

[ f (`)− f (`− 1)]. (2.16)

Interchanging the summation order (which is allowed by our assumptions) provides the
proof.

We start by proving bounds on ρ≥k. We rewrite

ρ≥k =
∑

`≥k

(`+ 1)p`+1

E[D]
=
∑

`≥0

f (`)p`+1, (2.17)

where f (`) = (`+ 1)1{`≥k}/E[D]. By (2.15) with q` = p`+1, for k ≥ 1 so that f (0) = 0,

ρ≥k =
∑

`≥1

[ f (`)− f (`− 1)]p≥`+1 =
(k+ 1)
p≥k+1

E[D] +
1

E[D]

∑

`≥k+1

p≥`+1. (2.18)
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From (2.8), it follows that

ρ≥k ≤
Cp

E[D]
(k+ 1)−(τ−2) +

∑

`≥k+1

Cp

E[D]
(`+ 1)−(τ−1), (2.19)

so that there exists a constant Cρ such that

ρ≥k ≤ Cρk−(τ−2). (2.20)

We often split the analysis into two cases: one where the degrees are small and one
where the degrees are large. For this we need bounds on truncated moments which are
the content of the next lemma.

Lemma 2.7 (Truncated moments of D). Assume that (2.8) holds for some τ > 1. Then
there exist constants Ca,τ > 0 such that, as `→∞,

E
�

Da1{D≤`}
�

≤
¨

Ca,τ`
a−(τ−1) when a > τ− 1,

Cτ−1,τ log` when a = τ− 1.
(2.21)

and, when a < τ− 1,
E
�

Da1{D>`}
�

≤ Ca,τ`
a−(τ−1). (2.22)

Proof. We start by bounding the truncated moments of D. We rewrite, using (2.15) and
with f (k) = ka1{k≤`},

E
�

Da1{D≤`}
�

=
∞
∑

k=0

f (k)pk =
∞
∑

k=1

[ f (k)− f (k− 1)]p≥k ≤
b`c
∑

k=1

[ka − (k− 1)a]p≥k. (2.23)

Using ka − (k− 1)a = a
∫ k

k−1
xa−1d x ≤ aka−1, we arrive at

E
�

Da1{D≤`}
�

≤ aCp

b`c
∑

k=1

ka−1k−(τ−1) ≤ aCp

b`c+1
∑

k=1

ka−τ. (2.24)

Note that k 7→ ka−τ is either increasing or decreasing. Hence,

b`c+1
∑

k=1

ka−τ ≤
∫ `+2

1

ka−τdk. (2.25)

For a > τ− 1,
∫ `+2

1

ka−τdk ≤
2

a+ 1−τ
`a−(τ−1), (2.26)

whereas for a = τ− 1,
∫ `+2

1

ka−τdk ≤ 2 log`. (2.27)
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Similarly, for a < τ− 2,

E
�

Da1{D>`}
�

= d`ea p≥` +
∑

k>`

[ka − (k− 1)a]p≥k (2.28)

≤ Cpd`ea−(τ−1) + aCp

∞
∑

b`c+1

ka−1(k+ 1)−(τ−1) ≤ Ca,τ`
a−(τ−1).

Because of Lemma 2.6, the same statements hold for the truncated moments of K
when τ is replaced by τ− 1.
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3
SPIN MODELS

In this chapter we formally introduce the spin models that are studied in this thesis.
We start by defining the Ising model in Section 3.1. Then, in Section 3.2, we introduce
various thermodynamic quantities, the critical temperature and the critical exponents
quantifying the behavior of the thermodynamic quantities near this phase transition. In
Section 3.4, we state two important correlation inequalities for the ferromagnetic Ising
model. Finally, we introduce the Potts model in Section 3.5 and discuss phase transitions
in this setting.

3.1 Ising model

We start by defining Ising models on finite graphs. Consider a graph GN = (VN , EN ), with
vertex set VN = [N] and with edge set EN . To each vertex i ∈ [N] an Ising spin σi = ±1
is assigned. A configuration of spins is denoted by σ = (σi)i∈[N]. The Ising model on GN
is then defined by the Boltzmann-Gibbs measure

µN (σ) =
1

ZN (β , B)
exp
�

β
∑

(i, j)∈EN

Ji, jσiσ j +
∑

i∈[N]

Biσi

�

. (3.1)

Here, β ≥ 0 is the inverse temperature and B the vector of external magnetic fields
B = (Bi)i∈[N] ∈ RN . For a uniform external field we write B instead of B, i.e., Bi = B for
all i ∈ [N].

Note that the inverse temperature β does not multiply the external field. This turns
out to be technically convenient and does not change the results, because we are only
looking at systems at equilibrium, and hence this would just be a reparametrization.

If Ji, j ≥ 0 for all (i, j) ∈ EN we call the model ferromagnetic and if Ji, j ≤ 0 for all
(i, j) ∈ EN we call the model antiferromagnetic. Models where the Ji, j have mixed signs
are also possible. If the interactions are random with a distribution that is symmetric
around zero, the model is called a spin glass. Models with mixed signs are not considered
in this thesis. In Chapters 4 until 9 we focus on the ferromagnetic Ising model with
Ji, j =+1 if (i, j) ∈ EN .
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The partition function ZN (β , B) is the normalization constant in (3.1), i.e.,

ZN (β , B) =
∑

σ∈{−1,+1}N
exp
�

β
∑

(i, j)∈EN

Ji, jσiσ j +
∑

i∈[N]

Biσi

�

. (3.2)

We let



·
�

µN
denote the expectation with respect to the Ising measure µN , i.e., for

every bounded function f : {−1,+1}N → R, we write




f (σ)
�

µN
=

∑

σ∈{−1,+1}N
f (σ)µN (σ). (3.3)

We are often interested in the thermodynamic limit of the Ising model, which we
interpret as follows: for a graph sequence (GN )N≥1, the behavior in the thermodynamic
limit is the behavior of the Ising model on GN as N →∞, provided that this is properly
defined. Note that this is a bit different from the setting where the Ising model is studied
on Zd . There, it is customary to study the Ising model on a box [−N , N]d with some
specified boundary conditions and then let N →∞. In our setting there is no such thing
as a boundary.

We next extend our definitions to the random Bethe tree T (D, K ,∞), which is the
limit `→∞ of the random tree T (D, K ,`) as defined in Section 2.5. One has to be very
careful in defining a Boltzmann-Gibbs measure on this tree, since trees suffer from the
fact that the boundaries of intrinsic (i.e., graph distance) balls in them have a size that
is comparable to their volume. We can adapt the construction of the Ising model on the
regular tree in [16] to this setting, as we now explain. For β ≥ 0, B > 0, let µt,+/ f

β ,B be the
Ising model on T (D, K , t) with + respectively free boundary conditions. For a function
f that only depends on T (D, K , m) with m≤ t, we let

〈 f 〉
µ
+/ f
β ,B
= lim

t→∞
〈 f 〉

µ
t,+/ f
β ,B

. (3.4)

In Chapter 4 we show that 〈 f 〉µ+
β ,B
= 〈 f 〉

µ
f
β ,B

, i.e., the behavior of quantities that depend

only on spins far away from the boundary is the same for all nonnegative boundary
conditions.

3.2 Thermodynamics

To study the Ising model we investigate several thermodynamic quantities. We first define
these quantities in finite volume, i.e., for graphs GN with N < ∞. The first quantity of
interest is the pressure:

Definition 3.1 (Pressure per vertex). For a graph GN , the pressure per vertex is defined
as

ψN (β , B) =
1

N
log ZN (β , B). (3.5)

Since the graph GN might be random, we can take the expectation over the random
graph to obtain the quenched pressure:
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Definition 3.2 (Quenched pressure per vertex). For a random graph GN , the quenched
pressure per vertex is defined as

pN (β , B) =
1

N
E
�

log ZN (β , B)
�

. (3.6)

Furthermore, we are interested in the following thermodynamic quantities:

Definition 3.3 (Thermodynamic quantities). For a graph GN ,

(a) the magnetization per vertex equals

MN (β , B) =
1

N

∑

i∈[N]




σi
�

µN
. (3.7)

(b) the susceptibility equals

χN (β , B) =
1

N

∑

i, j∈[N]

�

¬

σiσ j

¶

µN
−



σi
�

µN

¬

σ j

¶

µN

�

. (3.8)

(c) the internal energy equals

UN (β , B) =−
1

N

∑

(i, j)∈EN

¬

σiσ j

¶

µN
. (3.9)

(d) the specific heat equals

CN (β , B) =−β2 ∂

∂ β
UN (β , B). (3.10)

(e) the entropy equals

SN (β , B) =−
1

N

∑

σ∈{−1,+1}N
µN (σ) logµN (σ). (3.11)

We are often interested in the thermodynamic limit of these quantities, i.e., for the
limit N → ∞. For all these quantities, we drop the subscript N for the thermodynamic
limit of that quantity, e.g., M(β , B) = limN→∞MN (β , B), provided this limit exists.

When speaking about the magnetization of the random Bethe tree, we mean the
expectation of the root magnetization, i.e., for the random Bethe tree with root φ,

M(β , B) = E
h

〈σφ〉µ+/ f
β ,B

i

. (3.12)

3.3 Critical behavior

It is well known that when an external magnetic field is applied to a piece of iron the
iron becomes magnetic itself. When the temperature is sufficiently low, this iron keeps
its magnetic property even when the external magnetic field is removed. When the tem-
perature is too high, however, the magnetism is lost when the external magnetic field
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is removed. The temperature that separates these two regimes is known as the Curie
temperature.

Similar behavior can be proved for the Ising model, when looking at the spontaneous
magnetization, which is defined as M(β , 0+), where we write f (0+) for limx↘0 f (x). The
critical temperature is then defined as

Definition 3.4 (Critical temperature). The critical temperature equals

βc ≡ inf{β : M(β , 0+)> 0}. (3.13)

Note that such a βc can only exist in the thermodynamic limit, but not for the magne-
tization of a finite graph, since always MN (β , 0+) = 0. When 0< βc <∞, we say that the
system undergoes a phase transition at β = βc and B = 0+, because the thermodynamic
limit of the pressure is non-analytic in this point.

The critical behavior can now be expressed in terms of the following critical expo-
nents. We write f (x)� g(x) if the ratio f (x)/g(x) is bounded away from 0 and infinity
for the specified limit.

Definition 3.5 (Critical exponents). The critical exponents β,δ,γ, and γ′ are defined by:

M(β , 0+)� (β − βc)
β, for β ↘ βc; (3.14)

M(βc , B)� B1/δ, for B↘ 0; (3.15)

χ(β , 0+)� (βc − β)−γ , for β ↗ βc; (3.16)

χ(β , 0+)� (β − βc)
−γ′

, for β ↘ βc; (3.17)

Remark 3.6. Note that there is a difference between the symbol β for the inverse tem-
perature and the bold symbol β for the critical exponent in (3.14). Both uses for β are
standard in the literature, so we decided to stick to this notation.

Also note that these are stronger definitions than usual. E.g., normally the critical
exponent β is defined as that value such that

M(β , 0+) = (β − βc)
β+o(1), (3.18)

where o(1) is a function tending to zero for β ↘ βc .

3.4 Correlation inequalities

To analyze the ferromagnetic Ising model we make use of two important correlation
inequalities. Note that these inequalities only hold for the ferromagnetic Ising model,
but not for the antiferromagnet and spin glasses. The first result on ferromagnetic Ising
models we heavily rely on is the Griffiths, Kelly, Sherman (GKS) inequality, which gives
various monotonicity properties:

Lemma 3.7 (GKS inequality). Consider two Ising measures µ and µ′ on graphs G = (V, E)
and G′ = (V, E′), with inverse temperatures β and β ′ and external fields B and B′, respec-
tively. If E ⊆ E′, 0≤ β ≤ β ′ and 0≤ Bi ≤ B′i for all i ∈ V , then, for any U ⊆ V ,

0≤



∏

i∈U

σi
�

µ ≤



∏

i∈U

σi
�

µ′ . (3.19)
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A weaker version of this inequality was first proved by Griffiths [57] and later gen-
eralized by Kelly and Sherman [71]. The second result on ferromagnetic Ising models
is an inequality by Griffiths, Hurst and Sherman [58] which shows the concavity of the
magnetization in the external (positive) magnetic fields.

Lemma 3.8 (GHS inequality). Let β ≥ 0 and Bi ≥ 0 for all i ∈ V . Denote by

m j(B) = µ({σ : σ j =+1})−µ({σ : σ j =−1}) (3.20)

the magnetization of vertex j when the external fields at the vertices are B. Then, for any
three vertices j, k,` ∈ V ,

∂ 2

∂ Bk∂ B`
m j(B)≤ 0. (3.21)

We, for example, use these correlation inequalities in Chapter 4 to show that the
effect of nonnegative boundary conditions on the root magnetization of a tree diminishes
when the boundary converges to infinity.

3.5 Potts model

The Ising model can be generalized to the Potts model. For this, fix an integer q ≥ 2 and
assign to each vertex i ∈ [N] a Potts spin σi ∈ [q]. The Potts model on GN is then defined
by the Boltzmann-Gibbs measure

µN (σ) =
1

ZN (β , B)
exp
�

β
∑

(i, j)∈EN

Ji, jδ(σi ,σ j) +
∑

i∈[N]

Biδ(σi , 1)
�

, (3.22)

where δ(r, s) is the Kronecker delta, i.e.,

δ(r, s) =
�

1, when r = s,
0, otherwise, (3.23)

and the other definitions are equivalent to the Ising model.
Note that, for q = 2, we can alternatively choose σi =±1. Then,

δ(σi ,σ j) =
σiσ j + 1

2
. (3.24)

Hence, the Potts model with q = 2 is equivalent to the Ising model with βIsing = βPotts/2,
because the constant term +1/2 cancels in the partition function.

In Chapters 10–12 we focus on the antiferromagnetic Potts model with B = 0. This
model is related to the graph coloring problem, where the problem is to find if the ver-
tices of a graph can be colored with q colors in such a way that no two adjacent vertices
have the same color. Such a graph coloring would correspond to a ground state of the
antiferromagnetic Potts model with Ji, j = −1. Several phase transitions are predicted
in the physics literature for the antiferromagnetic Potts model, both at positive temper-
ature [72] and at zero temperature [102]. We concentrate on the phase transition with
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the highest temperature. We first compute an analytic expression for the pressure at high
temperature, which equals

pHT(β) =
c

2
log

�

1−
1− e−β

q

�

+ log q, (3.25)

and then define
βc = inf

¦

β : p(β) 6= pHT(β)
©

. (3.26)
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4
TREE RECURSION

We now start the analysis of the Ising model on locally tree-like random graphs. To
analyze this model, we first focus on local observables, for example the magnetization
of a uniformly selected vertex or the correlation of two spins connected by a uniformly
chosen edge. We can bound these quantities by enforcing boundary conditions on a large
ball around such a vertex or edge. By our assumption, the graph inside this ball will be a
tree a.s. and it remains to compute the quantity of interest on such a tree.

It is therefore of importance to understand the behavior of the Ising model on trees.
In this chapter we show that local observables can be computed using an explicit recur-
sion. Furthermore, we show that in a positive field the effect of nonnegative boundary
conditions vanishes as the size of the ball tends to infinity.

4.1 Results

Consider the following distributional recursion

h(t+1) d
= B+

Kt
∑

i=1

ξ(h(t)i ), (4.1)

where h(0) ≡ B, (Kt)t≥1, are i.i.d. with distribution ρ, (h(t)i )i≥1 are i.i.d. copies of h(t)

independent of Kt and
ξ(h) = atanh(β̂ tanh h). (4.2)

with
β̂ = tanhβ . (4.3)

In Section 4.3 we show that h(t) can be seen as the effective field on the root of the
random tree T (K , t) with ‘free’ boundary conditions.

We next show that for the limit t → ∞, the distributional recursion above has a
unique positive fixed point:

Theorem 4.1 (Tree recursion). Let B > 0 and let (Kt)t≥1 be i.i.d. according to some dis-
tribution ρ and assume that K1 < ∞, a.s. Consider the sequence of random variables
(h(t))t≥0 defined by h(0) ≡ B and, for t ≥ 0, by (4.1). Then, the distributions of h(t) are
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stochastically increasing and h(t) converges in distribution to the unique fixed point h∗ of
the recursion (4.1) that is supported on [0,∞).

This theorem establishes that the recursive relation that gives the effective field acting
on the root of the infinite tree T (D, K ,∞) is well-defined if B > 0, in the sense that the
recursion admits a unique positive fixed point h∗.

Note that we do not prove that the fixed point h∗ is the unique fixed point of the
recursion, only that it is the unique positive fixed point. By choosing negative or mixed
boundary conditions other fixed points can be obtained. These are not of interest to us,
however, because we can use the correlation inequalities to show that we only need to
look at nonnegative boundary conditions.

To prove this theorem, we adapt the proof of Dembo and Montanari [34] by taking the
actual forward degrees into account, instead of using Jensen’s inequality to replace them
by expected forward degrees, which are potentially infinite. This also makes a separate
analysis of nodes that have zero offspring superfluous, which considerably simplifies the
analysis.

4.2 Discussion

Statistical mechanics models on random trees and random graphs. A key idea to
analyze the Ising model on random graphs is to use the fact that expectations of local
quantities coincide with the corresponding values for the Ising model on suitable ran-
dom trees [34]. Statistical mechanics models on deterministic trees have been studied
extensively in the literature (see for instance [16, 76] and its relation to “broadcasting on
trees” in [48, 79]). The analysis on random trees is more recent and has been triggered
by the study of models on random graphs.

Potts model. In [37] a recursion similar to (4.1) is derived for the Potts model on the
k-regular tree. Recall that in the definition of the Potts model in Section 3.5 only the
color 1 is special, in the sense that the magnetic field only favors this color. Hence, the
behavior is symmetric in all other colors and a one-dimensional recursion can again be
obtained. A straightforward generalization to Galton-Watson trees yields

h
d
= B+

K
∑

i=1

log
eβ+hi + q− 1

ehi + eβ + q− 2
. (4.4)

The behavior of the Potts model is more complex, since there exists a region in the (β , B)
space where this recursion does not have a unique positive fixed point for all B > 0.

X Y model. So far, the focus has been on models where the spins can only have a
discrete number of values, but also continuous spin models exist. An example is the X Y
model, where spins can have any value in the interval [0, 2π) and the Boltzmann-Gibbs
measure is given by

µN (σ) =
1

ZN
exp
�

β
∑

(i, j)∈EN

Ji, j cos(σi −σ j) +
∑

i∈[N]

Bi cos(σi)
�

. (4.5)
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Again spins prefer to align, but being approximately the same is also favored over being
far from each other. This is different for the Potts model where the spins do or do not
align, but there is nothing in between. The continuity of the spin values is making it
much harder to obtain a recursion formula. This model on random graphs is briefly
studied in [42], but rigorous results are not obtained there.

4.3 Pruning trees

In [34, Lemma 4.1], it is shown that one can compute the marginal Ising measure on a
subtree of a tree by ‘pruning’ the tree. That is, one can leave away parts of the tree, which
can be compensated by updating the external magnetic field at the remaining vertices of
the tree. We present a slightly different statement of this in the next lemma.

Lemma 4.2 (Pruning trees). Consider a tree T = (V, E) with a distinguished leaf ` and let
k be such that (k,`) ∈ E. Write V−` = V \ {`} and E−` = E \ {(k,`)} and the corresponding
tree by T−` = (V−`, E−`). Denote the Ising measure on T with fields (Bi)i∈V by µT . Then, for
all σ−` = (σi)i∈V−` , the marginal Ising measure on T−` satisfies

∑

σ`=±1

µT (σ−`,σ`) = µ
′
T−`
(σ−`), (4.6)

where µ′T−` is the Ising measure on T−` with magnetic fields,

B′i =
�

Bi when i 6= k,
Bk + ξ(B`) when i = k, (4.7)

where ξ(h) is defined in (4.2).

Proof. We can write

µ(σ) = µ(σ−`,σ`) =
eH(σ−`)eβσkσ`+B`σ`

∑

σ−`

∑

σ`
eH(σ−`)eβσkσ`+B`σ`

, (4.8)

where
H(σ−`) = β

∑

(i, j)∈E−`

σiσ j +
∑

i∈V−`

Biσi . (4.9)

Then,
∑

σ`=±1

µT (σ−`,σ`) =
eH(σ−`)

�

eβσk+B` + e−βσk−B`
�

∑

σ−`
eH(σ−`)

�

eβσk+B` + e−βσk−B`
� . (4.10)

Since σk can only take two values we can write, for any function f (σk),

f (σk) = 1{σk=+1} f (1) +1{σk=−1} f (−1). (4.11)

These indicators can be rewritten as 1{σk=±1} =
1
2
(1±σk), so that

eβσk+B` + e−βσk−B` = exp
�

log(eβσk+B` + e−βσk−B`)
�

= exp
�

1

2
(1+σk) log(eβ+B` + e−β−B`) +

1

2
(1−σk) log(e−β+B` + eβ−B`)

�

= exp

�

σk
1

2
log

�

eβ+B` + e−β−B`

e−β+B` + eβ−B`

��

A(β , B`), (4.12)
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for some constant A(β , B`) independent of σk. An elementary calculation shows that

1

2
log

�

eβ+B` + e−β−B`

e−β+B` + eβ−B`

�

= atanh(tanhβ tanh B`) = ξ(B`). (4.13)

Hence,
∑

σ`=±1

µT (σ−`,σ`) =
eH(σ−`)eσkξ(B`)A(β , B`)

∑

σ−`
eH(σ−`)eσkξ(B`)A(β , B`)

= µ′T−`(σ−`). (4.14)

This lemma can be applied recursively. When studying the Ising model on the random
tree T distributed as T (K ,`) this leads to the distributional recursion (4.1).

4.4 Uniqueness of the positive fixed point

To prove Theorem 4.1, we first study the Ising model on a tree with ` generations, T (`),
with either + or free boundary conditions, where the Ising models on the tree T (`) with
+/free boundary conditions are defined by the Boltzmann-Gibbs measures

µ`,+(σ) =
1

Z`,+(β , B)
exp
�

β
∑

(i, j)∈T (`)

σiσ j +
∑

i∈T (`)

Biσi

�

1{σi=+1, for all i∈∂T (`)}, (4.15)

and

µ`, f (σ) =
1

Z`, f (β , B)
exp
�

β
∑

(i, j)∈T (`)

σiσ j +
∑

i∈T (`)

Biσi

�

, (4.16)

respectively, where Z`,+/ f are the proper normalization factors and ∂T (`) denotes the
vertices in the `-th generation of T (`). In the next lemma we show that the effect of
these boundary conditions vanishes when `→∞. This lemma is a generalization of [34,
Lemma 4.3], where this result is proved in expectation for graphs with a finite-variance
degree distribution. This generalization is possible by taking the degrees into account
more precisely, instead of using Jensen’s inequality to replace them by average degrees.
This also simplifies the proof.

We then show that the recursion (4.1) has a fixed point and use a coupling with
the root magnetization in trees and Lemma 4.3 to show that this fixed point does not
depend on the initial distribution h(0), as long as the initial distribution is nonnegative,
thus showing that (4.1) has a unique positive fixed point.

Lemma 4.3 (Vanishing effect of boundary conditions). Let m`,+/ f (B) denote the root
magnetization given T (`) with external field per vertex Bi ≥ Bmin > 0 when the tree has
+/free boundary conditions. Assume that the forward degrees satisfy ∆i < ∞ a.s., for all
i ∈ T (`− 1). Let 0 ≤ β ≤ βmax < ∞. Then, there exists an A = A(βmax, Bmin) < ∞ such
that, a.s.,

m`,+(B)−m`, f (B)≤ A/`, (4.17)

for all `≥ 1.

Remark 4.4. Lemma 4.3 is extremely general. For example, it also applies to trees arising
from multitype branching processes.
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Proof. The lemma clearly holds for β = 0, so we assume that β > 0 in the remainder of
the proof.

Denote by m`(B, H) the root magnetization given T (`) with free boundary condi-
tions, when the external field on the vertices i ∈ ∂T (`) is Bi + Hi and Bi on all other
vertices i ∈ T (`−1). Condition on the tree T (`) and assume that the tree T (`) is finite,
which is true a.s., so that we can use Lemma 4.2. Thus, for 1≤ k ≤ `,

mk,+(B)≡ mk(B,∞) = mk−1(B, {β∆i}), (4.18)

where ∆i is the forward degree of vertex i ∈ ∂T (k− 1). By the GKS inequality

mk−1(B, {β∆i})≤ mk−1(B,∞). (4.19)

Since the magnetic field at all vertices in ∂T (k) is at least Bmin we can write, using
Lemma 4.2 and the GKS inequality, that

mk, f (B)≡ mk(B, 0)≥ mk−1(B,ξ(Bmin){∆i}). (4.20)

This inequality holds with equality when Bi = Bmin for all i ∈ ∂T (k). Using the GKS
inequality again, we have that

mk−1(B,ξ(Bmin){∆i})≥ mk−1(B, 0). (4.21)

Note that 0 ≤ ξ(Bmin) ≤ β . Since H 7→ mk(B, H{∆i}) is concave in H because of the
GHS inequality, we have that

mk−1(B,β{∆i})−mk−1(B, 0)≤ A
�

mk−1(B,ξ(Bmin){∆i})−mk−1(B, 0)
�

, (4.22)

where

A= A(βmax, Bmin) = sup
0<β≤βmax

β

ξ(Bmin)
<∞. (4.23)

Thus, we can rewrite mk,+(B) using (4.18) and bound mk, f (B) using (4.20) and (4.21),
to obtain

mk,+(B)−mk, f (B)≤ mk−1(B,β{∆i})−mk−1(B, 0). (4.24)

By (4.22), we then have that

mk,+(B)−mk, f (B)≤ A
�

mk−1(B,ξ(Bmin){∆i})−mk−1(B, 0)
�

≤ A
�

mk(B, 0)−mk−1(B, 0)
�

, (4.25)

where we have used (4.20) in the last inequality.
By (4.18) and (4.19), mk,+(B) is non-increasing in k and, by (4.20) and (4.21),

mk, f (B) is non-decreasing in k. Thus, by summing the inequality in (4.25) over k, we get
that

`
�

m`,+(B)−m`, f (B)
�

≤
∑̀

k=1

�

mk,+(B)−mk, f (B)
�

≤ A
∑̀

k=1

�

mk(B, 0)−mk−1(B, 0)
�

= A
�

m`(B, 0)−m0(B, 0)
�

≤ A, (4.26)

since 0≤ m`/0(B, 0)≤ 1.
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We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. Condition on the tree T (K ,∞). Then h(t) ≡ atanh(mt, f (B)) sat-
isfies the recursive distribution (4.1) because of Lemma 4.2. Since, by the GKS in-
equality, mt, f (B), and hence also h(t), are monotonically increasing in t, we have that
B = h(0) ≤ h(t) ≤ B + K0 <∞ for all t ≥ 0, where K0 is the degree of the root. So, h(t)

converges to some limit h. Since this holds a.s. for any tree T (K ,∞), the distribution of
h also exists and one can show that this limit is a fixed point of (4.1) (see [34, Proof of
Lemma 2.3]).

In a similar way, h(t,+) ≡ atanh(mt,+(B)) satisfies (4.1) when starting with h(0,+) =∞.
Then, h(t,+) is monotonically decreasing and, for t ≥ 1, B ≤ h(t) ≤ B + K0 <∞, so h(t,+)

also converges to some limit h.
Let h be a positive fixed point of (4.1), condition on this h and let h(0,∗) = h. Then h(t,∗)

converges as above to a limit h∗ say, when applying (4.1). Note that h(0) ≤ h(0,∗) ≤ h(0,+).
Coupling so as to have the same (Kt)t≥1 while applying the recursion (4.1), this order is
preserved by the GKS inequality, so that h(t) ≤ h(t,∗) ≤ h(t,+) for all t ≥ 0. By Lemma 4.3,

| tanh(h(t))− tanh(h(t,+))|= |mt, f (B)−mt,+(B)| → 0, for t →∞. (4.27)

Since the above holds a.s. for any tree T (K ,∞) and any realization of h∗, the distributions
of h, h and h∗ are equal, and, since h is a positive fixed point of (4.1), are all equal in
distribution to h.
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THERMODYNAMIC LIMIT

Using the results of the previous chapter, we can now compute the thermodynamic limit
of various thermodynamic quantities, most importantly the pressure per vertex. We give
an explicit formula for this in this chapter, using the fixed point of the recursion (4.1). In
the proof we first compute the internal energy which can then be integrated with respect
to β to obtain the pressure. The magnetization and susceptibility can then be obtained
by differentiating the pressure with respect to B.

5.1 Results

An explicit formula for the thermodynamic limit of the pressure is given in the following
theorem:

Theorem 5.1 (Thermodynamic limit of the pressure). Assume that the random graph
sequence (GN )N≥1 is locally tree-like with asymptotic degree distribution P, where P has
strongly finite mean, and is uniformly sparse. Then, for all 0 ≤ β <∞ and all B ∈ R, the
thermodynamic limit of the pressure exists, a.s., and equals

lim
N→∞

ψN (β , B) = ϕ(β , B), (5.1)

where, for B < 0, ϕ(β , B) = ϕ(β ,−B), ϕ(β , 0) = limB↘0ϕ(β , B) and, for B > 0,

ϕ(β , B) =
E[D]

2
log cosh(β)−

E[D]
2

E[log(1+ β̂ tanh(h1) tanh(h2))]

+E
�

log
�

eB
D
∏

i=1

�

1+ β̂ tanh(hi)
�

+ e−B
D
∏

i=1

�

1− β̂ tanh(hi)
�

��

, (5.2)

where

(i) D has distribution P;

(ii) (hi)i≥1 are i.i.d. copies of the positive fixed point h = h(β , B) of the distributional
recursion (4.1);
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(iii) D and (hi)i≥1 are independent.

Various thermodynamic quantities can be computed by taking the proper derivative
of the function ϕ(β , B) as we show in the next theorem.

Theorem 5.2 (Thermodynamic quantities). Assume that the random graph sequence
(GN )N≥1 is locally tree-like with asymptotic degree distribution P, where P has strongly
finite mean, and is uniformly sparse. Then, for all β ≥ 0 and B 6= 0, each of the following
statements holds a.s.:

(a) Magnetization. The thermodynamic limit of the magnetization per vertex exists and is
given by

M(β , B) =
∂

∂ B
ϕ(β , B). (5.3)

(b) Internal energy. The thermodynamic limit of the internal energy per vertex exists and
is given by

U(β , B) =−
∂

∂ β
ϕ(β , B). (5.4)

(c) Susceptibility. The thermodynamic limit of the susceptibility exists and is given by

χ(β , B) =
∂ 2

∂ B2ϕ(β , B). (5.5)

Another physical quantity studied in the physics literature is the specific heat,

CN (β , B)≡−β2 ∂ UN

∂ β
. (5.6)

Unfortunately, we were not able to prove that this converges to β2 ∂ 2

∂ β2ϕ(β , B), because
we do not have convexity or concavity of the internal energy in β . We expect, however,
that this limit also holds.

Taking the derivatives of Theorem 5.2 we can also give explicit expressions for the
magnetization and internal energy which have a physical interpretation:

Corollary 5.3 (Explicit expressions for thermodynamic quantities). Assume that the graph
sequence (GN )N≥1 is locally tree-like with asymptotic degree distribution P, where P has
strongly finite mean, and is uniformly sparse. Then, for all β ≥ 0 and B ∈ R, each of the
following statements holds a.s.:

(a) Magnetization. Let D have distribution P and let νD+1 be the random Ising measure
on a tree with D+ 1 vertices (one root and D leaves) defined by

νD+1(σ) =
1

ZD+1(β)
exp
�

β

D
∑

i=1

σ0σi + Bσ0 +
D
∑

i=1

hiσi

�

, (5.7)

where (hi)i≥1 are i.i.d. copies of h, independent of D. Then, the thermodynamic limit
of the magnetization per vertex is given by

M(β , B) = E
h




σ0
�

νD+1

i

, (5.8)
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where the expectation is taken over D and (hi)i≥1. More explicitly,

M(β , B) = E
�

tanh
�

B+
D
∑

i=1

atanh(β̂ tanh(hi))
��

. (5.9)

(b) Internal energy. Let ν ′2 be the random Ising measure on one edge, defined by

ν ′2(σ) =
1

Z2(β , h1, h2)
exp
�

βσ1σ2 + h1σ1 + h2σ2
	

, (5.10)

where h1 and h2 are i.i.d. copies of h. Then the thermodynamic limit of the internal
energy per vertex is given by

U(β , B) =−
E[D]

2
E
h




σ1σ2
�

ν ′2

i

, (5.11)

where the expectation is taken over h1 and h2. More explicitly,

U(β , B) =−
E[D]

2
E
�

β̂ + tanh(h1) tanh(h2)

1+ β̂ tanh(h1) tanh(h2)

�

. (5.12)

Note that the magnetization and internal energy are local observables, i.e., they are
spin or edge variables averaged out over the graph. This is not true for the susceptibil-
ity, which is an average over pairs of spins, making it more difficult to give an explicit
expression. We come back to rewriting the susceptibility in Chapter 9.

5.2 Discussion

The objective method. We study the Ising model on a random graph, which gives rise
to a model with double randomness. Still, in the thermodynamic limit, the pressure is
essentially deterministic. This is possible, because it suffices to study the Ising model on
the local neighborhood of a uniformly chosen vertex. This local neighborhood converges
by our assumptions to the tree T (D, K ,∞), and it thus suffices to study the Ising model
on this limiting object. An analysis of this kind is therefore known as the objective method
introduced by Aldous and Steele in [11].

Universality. That our results hold for a wide variety of random graph models does not
come as a surprise. It is believed that the behavior of networks shows a great universal-
ity. Distances in random graph models, for example, also show a remarkably universal
behavior. See, e.g., [64] for an overview of results on distances in power-law random
graphs. These distances mainly depend on the power-law exponent and not on other
details of the graph.

Erdős-Rényi random graphs. The results above, as well as those in [34], include the
Erdős-Rényi random graph as a special case. Earlier results for this model have been ob-
tained in [96], where the high-temperature and zero-temperature pressure are computed
using interpolation methods.
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Non-homogeneous tree-like graphs. Note that the results above only apply to graphs
that converge locally to a homogeneous tree and thus, for instance, not for many inhomo-
geneous random graphs studied in [24] where the vertices can be of different types and
hence also the local structure is a multi-type Galton-Watson branching process, although
certain parts of our proof easily extend to this case.

Also preferential attachment graphs do not fit in our framework. In such models a
growing graph is constructed by attaching new vertices to older vertices proportional to
their degrees. Preferential attachment graphs are still locally tree-like, but the offspring
is again a multi-type branching process, where the type space is continuous [18].

In both models there will not be a single random positive fixed point h, but the effec-
tive field at a certain vertex will depend on its type. Also, the expectations in the results
should not only be over the degree D and the fields hi , but should also be over the types
of random vertices.

Non-tree-like graphs. The locally tree-likeness assumption is not very realistic for real-
world networks. It would therefore be interesting to investigate what happens if this
condition is relaxed. An example could be the configuration model with a household
structure, i.e., besides the edges formed in the configuration model the vertices are parti-
tioned into small groups, the households, which form a complete graph. The SIR model
to study epidemics on such a random graph model, where it is assumed that the infec-
tion rate in a household is different from the infection rate of the other neighbors in the
graph, is studied in [13, 14]. Also for this model, a branching process approximation can
be made to describe the evolving process. It seems worthwhile to investigate if this is
also possible for the Ising model on such random graphs.

A second example of non-tree-like graphs are scale-free percolation clusters as defined
in [33]. This model takes geometry into account by starting with a d-dimensional lattice
where all vertices are assigned a random weight. The probability that two vertices are
connected then depends both on the weights of these two vertices and the distance be-
tween them. By choosing the weights and the dependence on the distance appropriately
power-law degree distributions can be obtained. It would be interesting to study the Ising
model on such percolation clusters, where it would also be a nice possibility to let the
interaction strength depend on the distance between two vertices, modeling that close
friends are influencing each other more strongly than friends living on opposite sides of
the world.

Dynamics. Our results all describe properties of the system in equilibrium. It would
also be interesting to study the dynamics of this model, for example by studying Glauber
dynamics to answer questions about metastability. E.g., the setting in [86] can be used,
where the Ising model in 2d is studied with a small positive field and very low tempera-
ture. The question then is how long it takes for the system to change from the metastable
state where all spins are −1 to the stable system where all spins are +1. It is to be ex-
pected that again the large degree vertices play a crucial role, but it is unclear if this will
be the case for all power-law degree distributions as for the contact process [25] or only
for τ small.

It would also be interesting to study Gibbs-non-Gibbs transitions [45]. This describes
the phenomenon that when the system undergoes a transition under Glauber dynamics
from one Gibbs measure µ to another Gibbs measure ν , the system at intermediate times
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can not be described with a Gibbs measure. This phenomenon has for example been
studied on trees in [44].

Absence of magnetic field. In [81], the Ising model on k-regular graphs is studied
when there is no magnetic field, i.e., B = 0. There it is shown that the Ising measure
converges locally weakly to a symmetric mixture of the Ising measure with + and −
boundary conditions on the k-regular tree. This is later generalized in [15] to more
general locally tree-like graphs under some mild continuity condition.

Potts model. The thermodynamic limit of the pressure for the Potts model can also
be computed when the relevant recursion has a unique positive fixed point as is shown
in [37] and the result is similar to that of the Ising model. Later, in [36] the pressure is
computed for all values of β and B for the Potts model on the k-regular graph, with k
even.

5.3 Overview and organization of the proof

In this section, we give an overview of the proof of Theorem 5.1, and reduce it to the
proofs of Propositions 5.4 and 5.5 below. Proposition 5.4 is instrumental to control the
implicit dependence of the pressure of the random Bethe tree ϕ(β , B) on the inverse
temperature β via the field h. This is used in Proposition 5.5 which proves that the
derivative of the pressure with respect to β , namely minus the internal energy, converges
in the thermodynamic limit to the derivative of ϕ(β , B). We also clearly indicate how our
proof deviates from that by Dembo and Montanari in [34].

We first analyze the case where B > 0 and deal with B ≤ 0 later. By the fundamental
theorem of calculus,

lim
N→∞

ψN (β , B) = lim
N→∞

�

ψN (0, B) +

∫ β

0

∂

∂ β ′
ψN (β

′, B)dβ ′
�

(5.13)

= lim
N→∞

�

ψN (0, B) +

∫ ε

0

∂

∂ β ′
ψN (β

′, B)dβ ′ +

∫ β

ε

∂

∂ β ′
ψN (β

′, B)dβ ′
�

,

for any 0< ε < β . For all N ≥ 1,

ψN (0, B) = log(2 cosh(B)) = ϕ(0, B), (5.14)

so this is also true for N →∞.
By the uniform sparsity of (GN )N≥1,

�

�

�

�

∂

∂ β
ψN (β , B)

�

�

�

�

=

�

�

�

�

1

N

∑

(i, j)∈EN




σiσ j
�

µN

�

�

�

�

≤
|EN |
N
≤ c, (5.15)

for some constant c. Thus, uniformly in N ,
�

�

�

�

∫ ε

0

∂

∂ β ′
ψN (β

′, B)dβ ′
�

�

�

�

≤ cε. (5.16)
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Using the boundedness of the derivative for β ′ ∈ [ε,β] and by dominated convergence,
we also have that

lim
N→∞

∫ β

ε

∂

∂ β ′
ψN (β

′, B)dβ ′ =

∫ β

ε

lim
N→∞

∂

∂ β ′
ψN (β

′, B)dβ ′. (5.17)

For β > 0, we show that the partial derivative with respect to β of ψN (β , B) converges to
the partial derivative with respect to β of ϕ(β , B). For this, we need that we can in fact
ignore the dependence of h on β when computing the latter derivative as we show first:

Proposition 5.4 (Dependence of ϕ on (β , B) via h). Assume that the distribution P has
strongly finite mean. Fix B1, B2 > 0 and 0< β1,β2 <∞. Let h1 and h2 be the fixed points of
(4.1) for (β1, B1) and (β2, B2), respectively. Let ϕh(β , B) be defined as in (5.2) with (hi)i≥1
replaced by i.i.d. copies of the specified h. Then,

(a) For B1 = B2, there exists a λ1 <∞ such that

|ϕh1
(β1, B1)−ϕh2

(β1, B1)| ≤ λ1|β1 − β2|τ−1. (5.18)

(b) For β1 = β2, there exists a λ2 <∞ such that

|ϕh1
(β1, B1)−ϕh2

(β1, B1)| ≤ λ2|B1 − B2|τ−1. (5.19)

Note that this proposition only holds if τ ∈ (2, 3). For τ > 3, the exponent τ− 1 can
be improved to 2, as is shown in [34], but this is of no importance to the proof. We need
part (b) of the proposition above later in the proof of Corollary 5.3.

Proposition 5.5 (Convergence of the internal energy). Assume that the graph sequence
(GN )N≥1 is locally tree-like with asymptotic degree distribution P, where P has strongly
finite mean, and is uniformly sparse. Let β > 0. Then, a.s.,

lim
N→∞

∂

∂ β
ψN (β , B) =

∂

∂ β
ϕ(β , B), (5.20)

where ϕ(β , B) is given in (5.2).

By Proposition 5.5 and bounded convergence,

∫ β

ε

lim
N→∞

∂

∂ β ′
ψN (β

′, B)dβ ′ =

∫ β

ε

∂

∂ β ′
ϕ(β ′, B)dβ ′ = ϕ(β , B)−ϕ(ε, B), (5.21)

again by the fundamental theorem of calculus.
Observing that 0 ≤ tanh(h) ≤ 1, one can show that, by dominated convergence,

ϕ(β , B) is right-continuous in β = 0. Thus, letting ε↘ 0,

lim
N→∞

ψN (β , B) = lim
ε↘0

lim
N→∞

�

ψN (0, B) +

∫ ε

0

∂

∂ β ′
ψN (β

′, B)dβ ′ +

∫ β

ε

∂

∂ β ′
ψN (β

′, B)dβ ′
�

= ϕ(0, B) + lim
ε↘0

�

ϕ(β , B)−ϕ(ε, B)
�

= ϕ(β , B), (5.22)
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which completes the proof for B > 0.
The Ising model with B < 0 is equivalent to the case B > 0, because one can multi-

ply all spin variables (σi)i∈[N] and B with −1 without changing Boltzmann-Gibbs mea-
sure (3.1). Furthermore, note that,

�

�

�

∂

∂ B
ψN (β , B)

�

�

�=

�

�

�

�

1

N

∑

i∈[N]




σi
�

µN

�

�

�

�

≤ 1, (5.23)

so that B 7→ ψN (β , B) is uniformly Lipschitz continuous with Lipschitz constant one.
Therefore,

lim
N→∞

ψN (β , 0) = lim
N→∞

lim
B↘0

ψN (β , B) = lim
B↘0

lim
N→∞

ψN (β , B) = lim
B↘0

ϕ(β , B). (5.24)

The proof given above follows the line of argument in [34], but in order to prove The-
orem 4.1 and Propositions 5.4 and 5.5 we have to make substantial changes to generalize
the proof to the infinite-variance case.

The proof of Proposition 5.4(a) is somewhat more elaborate, because we have to
distinguish between the cases where D in (5.2) is small or large, but the techniques used
remain similar. By, again, taking into account the actual degrees more precisely, the
analysis is simplified however: we, for example, do not rely on the exponential decay
of the correlations. Part (b) of this proposition is new and can be proved with similar
techniques. The proof of Proposition 5.5 is proved in a similar way as in [34].

We prove Proposition 5.4 in Section 5.4 and Proposition 5.5 in Section 5.5. In Sec-
tion 5.6 we study the thermodynamic quantities to prove Corollary 5.3.

5.4 Dependence of ϕ on (β , B) via h

We now prove Proposition 5.4 by first bounding the dependence of ϕ on h in Lemma 5.6
and subsequently bounding the dependence of h on β and B in Lemmas 5.7 and 5.8
respectively.

Lemma 5.6 (Dependence of ϕ on h). Assume that the distribution P has strongly finite
mean. Fix B1, B2 > 0 and 0 < β1,β2 < ∞. Let h1 and h2 be the fixed points of (4.1) for
(β1, B1) and (β2, B2), respectively. Let ϕh(β , B) be defined as in (5.2) with (hi)i≥1 replaced
by i.i.d. copies of the specified h. Then, for some λ <∞,

|ϕh1
(β1, B1)−ϕh2

(β1, B1)| ≤ λ‖ tanh(h1)− tanh(h2)‖τ−1
MK

, (5.25)

where ‖X − Y ‖MK denotes the Monge-Kantorovich-Wasserstein distance between the random
variables X and Y , i.e., ‖X − Y ‖MK is the infimum of E[|X̂ − Ŷ |] over all couplings (X̂ , Ŷ ) of
X and Y .

Proof. Let X i and Yi be i.i.d. copies of X = tanh(h1) and Y = tanh(h2) respectively and
also independent of D. When ‖X − Y ‖MK = 0 or ‖X − Y ‖MK = ∞, the statement in the
lemma clearly holds. Thus, without loss of generality, we fix γ > 1 and assume that
(X i , Yi) are i.i.d. pairs, independent of D, that are coupled in such a way that E|X i−Yi | ≤
γ‖X − Y ‖MK <∞.
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Let β̂ = tanh(β1) and, for `≥ 2,

F`(x1, . . . , x`) = log
�

eB
∏̀

i=1

(1+ β̂ x i)+ e−B
∏̀

i=1

(1− β̂ x i)
�

−
1

`− 1

∑

1≤i< j≤`

log(1+ β̂ x i x j),

(5.26)
and let

F1(x1, x2) =
1

2

�

log
�

eB(1+ β̂ x1) + e−B(1− β̂ x1)
�

+ log
�

eB(1+ β̂ x2) + e−B(1− β̂ x2)
�

− log(1+ β̂ x1 x2)
�

. (5.27)

Then, with D having distribution P,

ϕh1
(β1, B1) = F0 +E[FD(X1, . . . , Xmax{2,D})], (5.28)

and
ϕh2
(β1, B1) = F0 +E[FD(Y1, . . . , Ymax{2,D})], (5.29)

for some constant F0. In the remainder of the proof we assume that F1 is defined as
in (5.26). The proof, however, also works for F1 as defined in (5.27).

We split the absolute difference between ϕh1
(β1, B1) and ϕh2

(β1, B1) into two parts
depending on whether D is small or large, i.e., for some constant θ > 0 to be chosen later
on, we split
�

�

�E
�

FD(Y1, . . . , YD)− FD(X1, . . . , XD)
�

�

�

�≤
�

�

�E
�

(FD(Y1, . . . , YD)− FD(X1, . . . , XD))1{D≤θ}
�

�

�

�

+
�

�

�E
�

(FD(Y1, . . . , YD)− FD(X1, . . . , XD))1{D>θ}
�

�

�

�. (5.30)

Note that

F`(Y1, . . . , Y`)− F`(X1, . . . , X`) =

∫ 1

0

d

ds
F`(sY1 + (1− s)X1, . . . , sY` + (1− s)X`)

�

�

�

s=t
dt

=

∫ 1

0

∑̀

i=1

(Yi − X i)
∂ F`
∂ x i
(tY1 + (1− t)X1, . . . , tY` + (1− t)X`)dt

=
∑̀

i=1

(Yi − X i)

∫ 1

0

∂ F`
∂ x i
(tY1 + (1− t)X1, . . . , tY` + (1− t)X`)dt. (5.31)

As observed in [34, Corollary 6.3], ∂ F`
∂ x i

is uniformly bounded, so that

�

�F`(Y1, . . . , Y`)− F`(X1, . . . , X`)
�

�≤ λ1

∑̀

i=1

|Yi − X i |, (5.32)

where λ1 is allowed to change from line to line. Hence,

�

�E
�

(FD(Y1, . . . , YD)− FD(X1, . . . , XD))1{D>θ}
�

�

�≤ E
� D
∑

i=1

|Yi − X i |λ11{D>θ}]
�

≤ λ1‖X − Y ‖MKE[D1{D>θ}]. (5.33)
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By Lemma 2.7,
E[D1{D>θ}]≤ C1,τθ

−(τ−2), (5.34)

so that
�

�E
�

(FD(Y1, . . . , YD)− FD(X1, . . . , XD))1{D>θ}
�

�

�≤ λ1‖X − Y ‖MKθ
−(τ−2). (5.35)

By the fundamental theorem of calculus, we can also write

F`(Y1, . . . , Y`)− F`(X1, . . . , X`) =
∑̀

i=1

∆i F` +
∑̀

i 6= j

(Yi − X i)(Yj − X j) f
(`)
i j , (5.36)

with

∆i F` = (Yi − X i)

∫ 1

0

∂ F`
∂ x i
(X1, . . . , tYi + (1− t)X i , . . . , X`)dt, (5.37)

and

f (`)i j =

∫ 1

0

∫ t

0

∂ 2F`
∂ x i∂ x j

(sY1+(1−s)X1, . . . , sYi+(1−s)X i , . . . , sY`+(1−s)X`)dsdt. (5.38)

Therefore,
�

�E
�

(FD(Y1, . . . , YD)− FD(X1, . . . , XD))1{D≤θ}
�

�

� (5.39)

≤
�

�

�

�

E
� D
∑

i=1

∆i FD1{D≤θ}

�
�

�

�

�

+

�

�

�

�

E
� D
∑

i 6= j

(Yi − X i)(Yj − X j) f
(D)
i j 1{D≤θ}

�
�

�

�

�

.

Since ∂ 2 F`
∂ x i∂ x j

is also uniformly bounded [34, Corollary 6.3],

�

�

�

�

E
� D
∑

i 6= j

(Yi − X i)(Yj − X j) f
(D)
i j 1{D≤θ}

�
�

�

�

�

≤ λ2E
� D
∑

i 6= j

|Yi − X i ||Yj − X j |1{D≤θ}

�

≤ λ2‖X − Y ‖2
MK
E[D21{D≤θ}]

≤ λ2‖X − Y ‖2
MK
θ−(τ−3), (5.40)

by Lemma 2.7, where λ2 is allowed to change from line to line. We split

�

�

�

�

E
� D
∑

i=1

∆i FD1{D≤θ}

�
�

�

�

�

≤
�

�

�

�

E
� D
∑

i=1

∆i FD

�
�

�

�

�

+

�

�

�

�

E
� D
∑

i=1

∆i FD1{D>θ}

�
�

�

�

�

. (5.41)

By symmetry of the functions F` with respect to their arguments, for i.i.d. (X i , Yi) inde-
pendent of D,

E
� D
∑

i=1

∆i FD

�

= E
�

D∆1FD
�

= E
�

D(Y1 − X1)

∫ 1

0

∂ FD

∂ x1
(tY1 + (1− t)X1, X2, . . . , XD)dt

�

.

(5.42)
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Differentiating (5.26) gives, for `≥ 2,

∂

∂ x1
F`(x1, . . . , x`) =ψ(x1, g`(x2, . . . , x`))−

1

`− 1

∑̀

j=2

ψ(x1, x j), (5.43)

where ψ(x , y) = β̂ y/(1+ β̂ x y) and

g`(x2, . . . , x`) = tanh
�

B+
∑̀

j=2

atanh(β̂ x j)
�

. (5.44)

Using that `P` = E[D]ρ`−1, we have that, with K distributed as ρ,

E[Dψ(X1, gD(X2, . . . , XD))] = E[D]E[ψ(X1, gK+1(X2, . . . , XK+1))] = E[D]E[ψ(X1, X2)],
(5.45)

because gK+1(X2, . . . , XK+1) is a fixed point of (4.1), so that gK+1(X2, . . . , XK+1)
d
= X2 and

is independent of X1. Therefore, one can show that

E
h

D
∂ FD

∂ x1
(x , X2, . . . , Xmax{2,D})

i

= 0, for all x ∈ [−1,1]. (5.46)

Since ∂ FD

∂ x1
is uniformly bounded, D ∂ FD

∂ x1
is integrable, so that, by Fubini’s theorem and (5.46),

E
� D
∑

i=1

∆i FD

�

= E
�

(Y1 − X1)

∫ 1

0

E
h

D
∂ FD

∂ x1
(tY1 + (1− t)X1, X2, . . . , XD)

�

� X1, Y1

i

dt
�

= 0. (5.47)

Furthermore, by (5.37) and the uniform boundedness of ∂ F`
∂ x i

,

�

�

�

�

E
� D
∑

i=1

∆i FD1{D>θ}

�
�

�

�

�

≤ E
� D
∑

i=1

|Yi − X i |λ11{D>θ}

�

≤ λ1‖X − Y ‖MKθ
−(τ−2). (5.48)

Therefore, we conclude that
�

�

�E
�

(FD(Y1, . . . , YD)−FD(X1, . . . , XD))1{D≤θ}
�

�

�

�≤ λ1‖X−Y ‖MKθ
−(τ−2)+λ2‖X−Y ‖2

MK
θ−(τ−3).

(5.49)
Combining (5.35) and (5.49) and letting θ = ‖X − Y ‖−1

MK
yields the desired result.

Lemma 5.7 (Dependence of h on β). Fix B > 0 and 0 < β1,β2 ≤ βmax. Let hβ1
and hβ2

,
where we made the dependence of h on β explicit, be the fixed points of (4.1) for (β1, B) and
(β2, B), respectively. Then, there exists a λ <∞ such that

‖ tanh(hβ1
)− tanh(hβ2

)‖MK ≤ λ|β1 − β2|. (5.50)
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Proof. For a given tree T (K ,∞) we can, as in the proof of Theorem 4.1, couple tanh(hβ)
to the root magnetizations m`, f /+

β
(B) such that, for all β ≥ 0 and `≥ 0,

m`, f
β
(B)≤ tanh(hβ)≤ m`,+

β
(B), (5.51)

where we made the dependence of m`, f /+ on β explicit. Without loss of generality, we
assume that 0< β1 ≤ β2 ≤ βmax. Then, by the GKS inequality,

| tanh(hβ2
)− tanh(hβ1

)| ≤ m`,+
β2
(B)−m`, f

β1
(B) = m`,+

β2
(B)−m`, f

β2
(B) +m`, f

β2
(B)−m`, f

β1
(B).

(5.52)
By Lemma 4.3, a.s.,

m`,+
β2
(B)−m`, f

β2
(B)≤ A/`, (5.53)

for some A<∞. Since m`, f
β
(B) is non-decreasing in β by the GKS inequality,

m`, f
β2
(B)−m`, f

β1
(B)≤ (β2 − β1) sup

β1≤β≤βmax

∂m`, f

∂ β
. (5.54)

Letting ` → ∞, it thus suffices to show that ∂m`, f /∂ β is, a.s., bounded uniformly in `
and 0< β1 ≤ β ≤ βmax.

From [34, Lemma 4.6] we know that

∂

∂ β
m`, f (β , B)≤

`−1
∑

k=0

Vk,`, (5.55)

with

Vk,` =
∑

i∈∂T (k)

∆i
∂

∂ Bi
m`(B, 0)

�

�

�

B=B
. (5.56)

By Lemma 4.2 and the GHS inequality,

∂

∂ Bi
m`(B, 0) =

∂

∂ Bi
m`−1(B, H)≤

∂

∂ Bi
m`−1(B, 0), (5.57)

for some field H, so that Vk,` is non-increasing in `. We may assume that Bi ≥ Bmin for all
i ∈ T (`) for some Bmin. Thus, also using Lemma 4.2,

Vk,` ≤ Vk,k+1 =
∑

i∈∂T (k)

∆i
∂

∂ Bi
mk+1(B, 0)

�

�

�

B=B
≤

∑

i∈∂T (k)

∆i
∂

∂ Bi
mk(B,ξ{∆i})

�

�

�

B=B

=
∂

∂ H
mk(B, H{∆i})

�

�

�

H=ξ(Bmin)
, (5.58)

where ξ = ξ(Bmin) is defined in (4.2). By the GHS inequality this derivative is non-
increasing in H, so that, by Lemma 4.2, the above is at most

1

ξ

�

mk(B,ξ{∆i})−mk(B, 0)
�

≤
1

ξ

�

mk+1(B, 0)−mk(B, 0)
�

. (5.59)
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Therefore,

∂

∂ β
m`, f (β , B)≤

`−1
∑

k=0

Vk,` ≤
1

ξ

`−1
∑

k=0

�

mk+1(B, 0)−mk(B, 0)
�

≤
1

ξ
<∞, (5.60)

for 0< β1 ≤ β ≤ βmax.

Lemma 5.8 (Dependence of h on B). Fix β ≥ 0 and B1, B2 ≥ Bmin > 0. Let hB1
and hB2

,
where we made the dependence of h on B explicit, be the fixed points of (4.1) for (β , B1) and
(β , B2), respectively. Then, there exists a λ <∞ such that

‖ tanh(hB1
)− tanh(hB2

)‖MK ≤ λ|B1 − B2|. (5.61)

Proof. This lemma can be proved along the same lines as Lemma 5.7. Therefore, for a
given tree T (K ,∞), we can couple tanh(hB) to the root magnetizations m`, f /+(B) such
that, for all B > 0 and `≥ 0,

m`, f (B)≤ tanh(hB)≤ m`,+(B). (5.62)

Without loss of generality, we assume that 0 < Bmin ≤ B1 ≤ B2. Then, by the GKS
inequality,

| tanh(hB2
)−tanh(hB1

)| ≤ m`,+(B2)−m`, f (B1) = m`,+(B2)−m`, f (B2)+m`, f (B2)−m`, f (B1).
(5.63)

By Lemma 4.3, a.s.,
m`,+(B2)−m`, f (B2)≤ A/`, (5.64)

for some A<∞. Since m`, f (B) is non-decreasing in B by the GKS inequality,

m`, f (B2)−m`, f (B1)≤ (B2 − B1) sup
B≥Bmin>0

∂m`, f

∂ B
. (5.65)

Letting `→∞, it thus suffices to show that ∂m`, f /∂ B is bounded uniformly in ` and B ≥
Bmin > 0. This follows from the GHS inequality, i.e., the concavity of the magnetization
in B:

sup
B≥Bmin>0

∂m`, f

∂ B
≤
∂m`, f

∂ B

�

�

�

�

�

B=Bmin

≤
2

Bmin

�

m`, f (Bmin)−m`, f (Bmin/2)
�

≤
2

Bmin
<∞,

(5.66)
because for a concave function f : x 7→ f (x) it holds that f ′(x)≤ f (x)− f (x−ε)

ε
.

5.5 Convergence of the internal energy

We start by identifying the thermodynamic limit of the internal energy:

Lemma 5.9 (From graphs to trees). Assume that the graph sequence (GN )N≥1 is locally
tree-like with asymptotic degree distribution P, where P has finite mean, and is uniformly
sparse. Then, a.s.,

lim
N→∞

∂

∂ β
ψN (β , B) =

E[D]
2

E
h




σ1σ2
�

ν ′2

i

, (5.67)

where ν ′2 is defined in (5.10).
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Lemma 5.9 is proved in Section 5.5.1. Next, we compute the derivative of ϕ(β , B)
with respect to β in the following lemma and show that it equals the one on the graph:

Lemma 5.10 (Tree analysis). Assume that distribution P has strongly finite mean. Then,

∂

∂ β
ϕ(β , B) =

E[D]
2

E
h




σ1σ2
�

ν ′2

i

, (5.68)

where ν ′2 is defined in (5.10).

Lemma 5.10 is proved in Section 5.5.2. Lemmas 5.9 and 5.10 clearly imply Proposi-
tion 5.5.

5.5.1 From graphs to trees: proof of Lemma 5.9

This lemma can be proved as in [34]. The idea is to note that

∂

∂ β
ψN (β , B) =

1

N

∑

(i, j)∈EN




σiσ j
�

µN
=
|EN |
N

∑

(i, j)∈EN




σiσ j
�

µN

|EN |
. (5.69)

By the local convergence and the uniform sparsity, we have that, a.s. (see (2.11)),

lim
N→∞

|EN |
N
= E[D]/2. (5.70)

The second term of the right hand side of (5.69) can be seen as the expectation with
respect to a uniformly chosen edge (i, j) of the correlation

¬

σiσ j

¶

µN
. For a uniformly

chosen edge (i, j), denote by B(i, j)(t) all vertices at distance from either vertex i or j at
most t, and let ∂ B(i, j)(t) = B(i, j)(t) \ B(i, j)(t − 1). By the GKS inequality, for any t ≥ 1,

¬

σiσ j

¶ f

B(i, j)(t)
≤
¬

σiσ j

¶

µN
≤
¬

σiσ j

¶+

B(i, j)(t)
, (5.71)

where
¬

σiσ j

¶+/ f

B(i, j)(t)
is the correlation in the Ising model on B(i, j)(t)with+/free boundary

conditions on ∂ B(i, j)(t).
Let T (K , t) be the tree formed by joining the roots, φ1 and φ2, of two branching

processes with t generations and with offspring being i.i.d. copies of K at each vertex,
also at the roots. Then, taking N →∞, B(i, j)(t) converges to T (K , t), because of the local
convergence of the graph sequence. Indeed, observe that a random edge can be chosen,
by first picking a vertex with probability proportional to its degree, and then selecting a
neighbor uniformly at random. Using this, one can show (see [34, Lemma 6.4]), also
using the uniform sparsity, that, for all t ≥ 1, a.s.,

lim
N→∞

E(i, j)
�

¬

σiσ j

¶+/ f

B(i, j)(t)

�

= E
h

¬

σφ1
σφ2

¶+/ f

T (K ,t)

i

, (5.72)

where the first expectation is with respect to a uniformly at random chosen edge (i, j) ∈
EN and the second expectation with respect to the tree T (K , t). By Lemma 4.2 and
Theorem 4.1,

lim
t→∞

E
h

¬

σφ1
σφ2

¶+/ f

T (K ,t)

i

= E
h




σ1σ2
�

ν ′2

i

, (5.73)

thus proving the lemma.
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5.5.2 Tree analysis: proof of Lemma 5.10

From Proposition 5.4 it follows that we can assume that β is fixed in h when differ-
entiating ϕ(β , B) with respect to β . We let X i , i ≥ 1, be i.i.d. copies of tanh(h), also
independent of D. Then, differentiating (5.2) gives, using the exchangeability of the X i ,

∂

∂ β
ϕ(β , B) =

E[D]
2
β̂−

E[D]
2
(1−β̂2)E[ψ(X1, X2)]+(1−β̂2)E[Dψ(X1, gD(X2, . . . , XD))],

(5.74)
where now ψ(x , y) = x y

1+β̂ x y
and g`(x1, . . . , x`) is defined as in (5.44). Since (5.45) is

valid for any bounded function ψ(x , y)

∂

∂ β
ϕ(β , B) =

E[D]
2

E
�

β̂ + (1− β̂2)
X1X2

1+ β̂X1X2

�

=
E[D]

2
E
�

β̂ + X1X2

1+ β̂X1X2

�

. (5.75)

Since, with h1, h2 i.i.d. copies of h,

E
�

β̂ + X1X2

1+ β̂X1X2

�

= E
�

β̂ + tanh(h1) tanh(h2)

1+ β̂ tanh(h1) tanh(h2)

�

(5.76)

= E
�

eβ+h1+h2 − e−β−h1+h2 − e−β+h1−h2 + eβ−h1−h2

eβ+h1+h2 + e−β−h1+h2 + e−β+h1−h2 + eβ−h1−h2

�

= E
h




σ1σ2
�

ν ′2

i

,

where ν ′2 is given in (5.10), we have proved the lemma.

5.6 Thermodynamic quantities
To prove the statements in Theorem 5.2 we need to show that we can interchange the
limit of N →∞ and the derivatives of the finite volume pressure. We can do this using
the monotonicity properties of the Ising model and the following lemma:

Lemma 5.11 (Interchanging limits and derivatives). Let ( fN (x))N≥1 be a sequence of
functions that are twice differentiable in x. Assume that

(i) limN→∞ fN (x) = f (x) for some function x 7→ f (x) which is differentiable in x;

(ii) d
d x

fN (x) is monotone in [x −δ, x +δ] for all N ≥ 1 and some δ > 0.

Then,

lim
N→∞

d

dx
fN (x) =

d

dx
f (x). (5.77)

Proof. First, suppose that d2

dy2 fN (y) ≥ 0 for all y ∈ [x − δ, x + δ], all N ≥ 1 and some
δ > 0. Then, for δ > 0 sufficiently small and all N ≥ 1,

fN (x −δ)− fN (x)
−δ

≤
d

dx
fN (x)≤

fN (x +δ)− fN (x)
δ

, (5.78)

and, by taking N →∞ and assumption (i),

f (x −δ)− f (x)
−δ

≤ lim inf
N→∞

d

dx
fN (x)≤ limsup

N→∞

d

dx
fN (x)≤

f (x +δ)− f (x)
δ

. (5.79)

Taking δ↘ 0 now proves the result. The proof for d2

dx2 fN (x)≤ 0 is similar.
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We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. We apply Lemma 5.11 with the role of fN taken by B 7→ψN (β , B),
since

MN (β , B) =
1

N

∑

i∈[N]




σi
�

µN
=
∂

∂ B
ψN (β , B), (5.80)

and limN→∞ψN (β , B) = ϕ(β , B) by Theorem 5.1 and B 7→ MN (β , B) is non-decreasing
by the GKS inequality. Therefore,

lim
N→∞

MN (β , B) = lim
N→∞

∂

∂ B
ψN (β , B) =

∂

∂ B
ϕ(β , B), (5.81)

which proves part (a).
Part (b) follows immediately from Proposition 5.5 and the observation that

UN =−
1

N

∑

(i, j)∈EN




σiσ j
�

µN
=−

∂

∂ β
ψN (β , B). (5.82)

Part (c) is proved using Lemma 5.11 by combining part (a) of this theorem and that
B 7→ ∂

∂ B
MN (β , B) is non-increasing by the GHS inequality.

We can now prove each of the statements in Corollary 5.3 by taking the proper deriva-
tive of ϕ(β , B).

Proof of Corollary 5.3. It follows from Theorem 5.2 (a) that the magnetization per vertex
is given by

M(β , B) =
∂

∂ B
ϕ(β , B). (5.83)

Similar to the proof of Lemma 5.10, we can ignore the dependence of h on B when
differentiating ϕ(β , B) with respect to B by Proposition 5.4. Therefore,

∂

∂ B
ϕ(β , B) =

∂

∂ B
E
�

log
�

eB
D
∏

i=1

�

1+ β̂ tanh(hi)
�

+ e−B
D
∏

i=1

�

1− β̂ tanh(hi)
�

��

= E





eB
∏D

i=1(1+ β̂ tanh(hi))− e−B
∏D

i=1(1− β̂ tanh(hi))

eB
∏D

i=1(1+ β̂ tanh(hi)) + e−B
∏D

i=1(1− β̂ tanh(hi))





= E









eB
∏D

i=1

�

1+β̂ tanh(hi)
1−β̂ tanh(hi)

�1/2
− e−B

∏D
i=1

�

1−β̂ tanh(hi)
1+β̂ tanh(hi)

�1/2

eB
∏D

i=1

�

1+β̂ tanh(hi)
1−β̂ tanh(hi)

�1/2
+ e−B

∏D
i=1

�

1−β̂ tanh(hi)
1+β̂ tanh(hi)

�1/2









, (5.84)

where D has distribution P and (hi)i≥1’s are i.i.d. copies of h, independent of D. Using

that atanh(x) = 1
2

log
�

1+x
1−x

�

the above simplifies to

E
�

eB
∏D

i=1 eatanh(β̂ tanh(hi)) − e−B
∏D

i=1 e−atanh(β̂ tanh(hi))

eB
∏D

i=1 eatanh(β̂ tanh(hi)) + e−B
∏D

i=1 e−atanh(β̂ tanh(hi))

�

= E
�

tanh
�

B+
D
∑

i=1

atanh(β̂ tanh(hi))
��

. (5.85)
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By Lemma 4.2, this indeed equals E
h




σ0
�

νD+1

i

, where νD+1 is given in (5.7), which
proves part (a).

Part (b) immediately follows from Theorem 5.2(b) and Lemma 5.10.



6
INTERMEZZO: INFINITE-MEAN RANDOM

GRAPHS

So far, we have studied the Ising model on random graphs with strongly finite mean, that
is, there exist constants τ > 2 and C > 0 such that

p≥k ≤ Ck−(τ−1). (6.1)

The question naturally arises what happens if the degree distribution obeys a power law
with exponent τ ∈ (1, 2) in which case the degrees have infinite mean. Such networks
are observed in biological networks, see for example references in [97].

In [19, 47] the configuration model (CM) is studied when the degrees satisfy a power-
law degree distribution with τ ∈ (1,2). There it is shown that the graph does not have a
tree-like structure in this case: a part of the vertices, the so-called supervertices defined
below form a complete subgraph and all other vertices connect only to these superver-
tices. It therefore does not make sense to use the tree-based approach of the previous
chapters. We make heavy use of the results in [19, 47] in this chapter.

The configuration model with infinite-mean degrees will also not give a simple graph
with high probability. The behavior might, and will, depend strongly on how multiple
edges and self-loops are dealt with. Keeping all edges or removing multiple edges for
instance greatly influences first-passage percolation on this model [19]. We therefore
investigate both the original model, i.e., keeping all the multiple edges, and the erased
model where multiple edges and self-loops are deleted.

6.1 Model definitions

6.1.1 Model for the original configuration model

The original CM is defined as in Section 2.3. For convenience, we make a slightly stronger
assumption on the degree sequence, i.e., we assume that there exists a constant 0< CP <
∞ such that

p≥k = CP k−(τ−1)(1+ o(1)). (6.2)
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It is shown in [47, Lemma 2.1] that the total degree Lor
N =

∑

i∈[N] Dor
i properly rescaled

converges in distribution, i.e.,
Lor

N

N1/(τ−1)

d−→ η, (6.3)

where η is a known τ− 1 stable random variable. Since LN = 2|EN | is growing faster
than N , we have to scale the temperature with N . With the Ising model defined as

µ(σ) =
1

ZN
exp
�

βJ
∑

(i, j)∈EN

σiσ j + B
∑

i∈[N]

σi

�

, (6.4)

the internal energy per vertex equals,

J

N

∑

(i, j)∈EN

〈σiσ j〉. (6.5)

Since we want this to be an intensive quantity, i.e., not growing with N , we have to choose
J = JN as a decreasing function of N . Specifically, we choose

Jor
N = N/N1/(τ−1) = 1/N (2−τ)/(τ−1). (6.6)

From now on we write βN = βJN .

6.1.2 Model for the erased configuration model

The erased CM is constructed by starting with a graph generated according to the original
CM and after this, erasing all self-loops and merging multiple edges between any pair of
vertices into a single edge between these vertices.

The result in [19, Lemma 6.8] suggests that Ler
N = O(N log N). Hence, we again scale

the interaction strength and choose

Jer
N = 1/ log N . (6.7)

6.2 Results

In the next theorem, we compute the magnetization for the original CM and conclude
that the spontaneous magnetization is zero for all positive temperatures.

Theorem 6.1 (Magnetization in original CM). For all 0 ≤ β <∞ and B > 0, the magne-
tization equals

Mor(β , B) = tanh(B), (6.8)

and hence, the spontaneous magnetization equals

Mor(β , 0+) = 0. (6.9)

The idea behind the proof of this theorem is the following. The interaction strength
Jor

N has to go down to 0 very fast to keep the internal energy per vertex finite a.s. The
largest contribution to the total degree, however, comes from only a small number of
supervertices, which have a very large degree of the order N1/(τ−1). The degrees of
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normal vertices is much smaller. Hence, the interaction between a normal vertex and
the supervertices it is attached to is negligibly small for the magnetization of the normal
vertex. Hence, the normal vertices behave more or less independently from the rest of
the graph.

For the Ising model on the erased CM, we can be more precise:

Theorem 6.2 (Magnetization in erased CM). Fix 0 ≤ β < ∞ and B > 0. Let I(N) be a
sequence of random variables with values in [N] such that

Der
I(N)

log N
p
−→ A, (6.10)

for N →∞ and some A≥ 0. Then,

〈σI(N)〉er p
−→ tanh(B+ βA). (6.11)

From this theorem we can for example conclude that if I(N) is a uniform vertex in

[N], then DI(N)/ log N
p
−→ 0 and hence

〈σI(N)〉er p
−→ tanh(B). (6.12)

If I(N) is a sequence of supervertices, however, DI(N)/ log N
p
−→∞ and hence

〈σI(N)〉er p
−→ 1. (6.13)

6.3 Discussion

Scaling of the interactions. The scaling of the temperature happens in many models.
For example, in the Curie-Weiss model, the interactions have to be scaled by 1/N , because
the number of edges is N(N − 1)/2 [16]. The Sherrington-Kirkpatrick model is another
example. This model is a spin glass on the complete graph, where the interactions Ji, j
are i.i.d. standard normal distributions. Here, the interactions have to be scaled with
1/
p

N [99].

Internal energy. It would be interesting also to compute the internal energy for both
models. For the original model, we have seen that the role of normal vertices is negligible.
Hence, the main contribution to the internal energy will come from the supervertices.
These supervertices form a complete graph with multiple edges between each pair of
vertices. It is therefore to be expected that the internal energy will behave the same as
the Ising model on a complete graph with specific weights on the edges. These weights
will depend on the so-called Poisson-Dirichlet distribution.

For the erased model, an edge selected uniformly at random will with high probability
be an edge between a normal vertex and a supervertex. Since the spin of the supervertex
will be +1 with high probability, the internal energy will behave like the magnetization
of a vertex attached to a randomly selected edge, where the other side of the edge has a
+ boundary condition.
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6.4 Analysis for the original configuration model

In this section we leave out the superscript ‘or’ from all variables. The lower bound can
easily be obtained by deleting all edges from the graph, which does not increase the
magnetization by the GKS inequality. Every vertex then behaves independently and has
magnetization tanh(B).

For the upper bound we distinguish between supervertices and normal vertices. Fix
a sequence εN ↘ 0 arbitrary slowly. Then, we call a vertex i a supervertex if Di ≥
εN N1/(τ−1). All other vertices are called normal vertices.

With I denoting a vertex chosen uniformly for [N], we can write

MN (β , B) =
1

N

N
∑

i=1

〈σi〉= EI[〈σI 〉]. (6.14)

We split the analysis into the case where I is a normal vertex and where I is a supervertex:

EI[〈σI 〉] = EI[〈σI 〉1{DI≤εN N1/(τ−1)}] +EI[〈σI 〉1{DI>εN N1/(τ−1)}]. (6.15)

If I is a normal vertex, then we bound the magnetization by forcing all spins of its
neighbors to be +1, which is the same as letting the magnetic field of its neighbors
B j →∞. Denote the expectation under this measure by 〈·〉+. By the second GKS inequal-
ity (Lemma 3.7),

EI[〈σI 〉1{DI≤εN N1/(τ−1)}]≤ EI[〈σI 〉+1{DI≤εN N1/(τ−1)}]. (6.16)

By forcing all spins of the neighbors of vertex I to be +1, the behavior of the spin at
vertex I only depends on the number of neighbors of I and is independent of the rest of
the graph. Hence, by Lemma 4.2,

EI[〈σI 〉+1{DI≤εN N1/(τ−1)}] = E[tanh(B+ βN DI)1{DI≤εN N1/(τ−1)}]

≤ tanh(B) + βNE[DI1{DI≤εN N1/(τ−1)}], (6.17)

where we used that tanh(B + x) ≤ tanh(B) + x , which is true because d
dx

tanh x = 1−
tanh2 x ≤ 1. From Lemma 2.7,

βNE[DI1{DI≤εN N1/(τ−1)}]≤ C1,τε
2−τ
N βN N (2−τ)/(τ−1) = C1,τβε

2−τ
N = o(1). (6.18)

If I is a supervertex, we bound the value of its spin from above by +1, which is always
true. Hence,

EI[〈σI 〉1{DI>εN N1/(τ−1)}]≤ EI[1{DI>εN N1/(τ−1)}]≤ C0,τε
−(τ−1)
N N−1 = o(1), (6.19)

by Lemma 2.7. This proves the theorem.

6.5 Analysis for the erased configuration model

First of all, we show that the magnetization of the supervertices converges to 1 in proba-
bility:
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Proposition 6.3. Let mN be the number of vertices with degree bigger than εN N1/(τ−1),
where εN ↘ 0, such that mN →∞ arbitrary slowly. Denote by Vi the vertex with the i-th
largest degree. Then, for all i ∈ [mN ]

〈σVi
〉er p
−→ 1, (6.20)

for N →∞.

Proof. The bound
〈σVi
〉er ≤ 1, (6.21)

holds trivially, a.s. For the lower bound we partition the normal vertices uniformly at
random into mN partitions of equal size. Denote these partitions by Π1, . . . ,ΠmN

. Note
that each of these partitions has Θ(N/mN ) vertices in it, which converges to infinity.
We now only keep for all i the edges between vertex Vi and vertices in Πi . Denote the
resulting Ising expectation by 〈·〉 f .

In [19], it is shown that the number of normal vertices connected to a supervertex is
Θ(N) and hence the number of neighbors of Vi in Πi is Θ(N/mN ). Hence, the remaining
graph is a forest with mN trees in it, where each tree consists of a supervertex as root and
Θ(N/mN ) leaves attached to it. It thus follows from the GKS inequality and Lemma 4.2
that the magnetization of vertex Vi

〈σVi
〉er ≥ 〈σVi

〉 f ≥ tanh
�

B+
cN

mN
ξβN
(B)
�

. (6.22)

It is easy to see that cN
mN
ξβN
(B)→∞, so that

〈σVi
〉 f

p
−→ 1. (6.23)

We can now prove the theorem for the erased configuration model:

Proof of Theorem 6.2. If I(N) is a sequence of supervertices the theorem follows from
Proposition 6.3, since I(N)/ log N → ∞, a.s. Hence, we can assume that I(N) is a se-
quence of normal vertices. Again, we use that normal vertices only connect to superver-
tices. For these supervertices, we have seen in the previous proposition that its external
field goes to infinity a.s., and hence it follows from Lemma 4.2 that, conditionally on
DI(N),

〈σI(N)〉er = tanh
�

B+ DI(N)βN

�

= tanh
�

B+
DI(N)

log N
β
�

, (6.24)

so that the theorem follows from the assumption on I(N).
Note that to be precise, the behavior of σI(N) is not independent from the behavior of

the supervertices, but we can leave out vertex I(N) from the partitioning in the proof of
Proposition 6.3 and also keep the edges between vertex I(N) and the supervertices. Then,
the analysis in the previous proposition still goes through and the result still holds.
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7
PHASE TRANSITION

We now return to the Ising model on random graphs with strongly finite mean. In this
chapter we start our analysis of the critical behavior by computing the critical tempera-
ture. Recall from Chapter 3 that the critical temperature βc is defined as that value of β
where the spontaneous magnetization changes from being positive to being zero, i.e.,

βc ≡ inf{β : M(β , 0+)> 0}. (7.1)

7.1 Results

We first give an expression for the critical temperature:

Theorem 7.1 (Critical temperature). Assume that the random graph sequence (GN )N≥1 is
locally tree-like with asymptotic degree distribution P and is uniformly sparse. Then, a.s.,
the critical temperature βc of (GN )N≥1 and of the random Bethe tree T (D, K ,∞) equals

βc = atanh(1/ν). (7.2)

Note that this result implies that when ν ≤ 1 there is no phase transition at positive
temperature. This region corresponds exactly to the regime where there is no giant
component in the graph, see Section 2.6. The other extreme is when ν = ∞, which is
the case, e.g., if the degree distribution obeys a power law with exponent τ ∈ (2, 3].
In that case βc = 0 and hence the spontaneous magnetization is positive for any finite
temperature.

We next show that the phase transition at this critical temperature is continuous:

Proposition 7.2 (Continuous phase transition). It holds that

lim
B↘0

E[ξ(h(βc , B))] = 0, and lim
β↘βc

E[ξ(h(β , 0+))] = 0. (7.3)

7.2 Discussion

Regular trees. On the k-regular tree, finding a fixed point of the recursion (4.1) sim-
plifies to the deterministic relation

h= B+ (k− 1)ξ(h). (7.4)
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This makes it easy to analyse this case and tanhβc = 1/(k− 1) can be obtained straight-
forwardly [16].

Deterministic trees. The critical temperature of the Ising model on arbitrary determin-
istic trees is computed in [76]. An important quantity in this computation is played by
the so-called branching number, i.e., the average forward degree, which can be properly
defined for arbitrary deterministic trees. This branching number replaces ν in the for-
mula for the critical temperature above. The proof in [76] can easily be adapted for
our setting of random trees, and hence for random graphs, although certain parts can be
simplified as we show below.

Erdős-Rényi random graphs. The critical temperature for the Erdős-Rényi random
graph was already obtained in [96], by showing that at B = 0 the expression for the
pressure at high temperature, i.e., for β < βc , is not correct for β > βc , thus proving that
β = βc is a point of non-analyticity.

7.3 Preliminaries

Recall that we have derived an explicit formula for the magnetization in Corollary 5.3(a),
which is obtained by differentiating the expression for the thermodynamic limit of the
pressure per vertex that was first obtained. We restate this result in the next proposition
and present a more intuitive proof of this result.

Proposition 7.3 (Magnetization). Assume that the random graph sequence (GN )N≥1 is
locally tree-like with asymptotic degree distribution P, where P has strongly finite mean,
and is uniformly sparse. Then, a.s., for all β ≥ 0 and B > 0, the thermodynamic limit of the
magnetization per vertex exists and is given by

M(β , B) = E
�

tanh
�

B+
D
∑

i=1

ξ(hi)
��

, (7.5)

where

(i) D has distribution P;

(ii) (hi)i≥1 are i.i.d. copies of the positive fixed point of the distributional recursion (4.1);

(iii) D and (hi)i≥1 are independent.

The same holds on the random Bethe tree T (D, K ,∞).

Proof. Let φ be a vertex picked uniformly at random from [N] and EN be the corre-
sponding expectation. Then,

MN (β , B) =
1

N

N
∑

i=1

〈σi〉= EN[〈σφ〉]. (7.6)
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Denote by 〈·〉`,+/ f the expectations with respect to the Ising measure with +/free bound-
ary conditions on vertices at graph distance ` from φ. Note that 〈σφ〉`,+/ f only depends
on the spins of vertices in Bφ(`). By the GKS inequality [71],

〈σφ〉`, f ≤ 〈σφ〉 ≤ 〈σφ〉`,+. (7.7)

Taking the limit N → ∞, the ball Bφ(`) has the same distribution as the random tree
T (D, K ,`), because of the locally tree-like nature of the graph sequence. Conditioned on
the tree T , we can prune the tree, see Lemma 4.2, to obtain that

〈σφ〉`, f = tanh
�

B+
D
∑

i=1

ξ
�

h(`−1)
i

�

�

. (7.8)

Similarly,

〈σφ〉`,+ = tanh
�

B+
D
∑

i=1

ξ
�

h
′(`−1)
i

�

�

, (7.9)

where h
′(t+1)
i also satisfies (4.1), but has initial value h

′(0) =∞. Since this recursion has
a unique positive fixed point, see Theorem 4.1, we prove the proposition by taking the
limit `→∞ and taking the expectation over the tree T (D, K ,∞).

To study the critical behavior we investigate the function ξ(x) = atanh(β̂ tanh x) and
prove two important bounds that play a crucial role throughout the rest of Part I in this
thesis:

Lemma 7.4 (Properties of x 7→ ξ(x)). For all x ,β ≥ 0,

β̂ x −
β̂

3(1− β̂2)
x3 ≤ ξ(x)≤ β̂ x . (7.10)

The upper bound holds with strict inequality if x ,β > 0.

Proof. By Taylor’s theorem,

ξ(x) = ξ(0) + ξ′(0)x + ξ′′(ζ)
x2

2
, (7.11)

for some ζ ∈ (0, x). It is easily verified that ξ(0) = 0,

ξ′(0) =
β̂(1− tanh2 x)

1− β̂2 tanh2 x

�

�

�

�

x=0

= β̂ , (7.12)

and

ξ′′(ζ) =−
2β̂(1− β̂2)(tanhζ)(1− tanh2 ζ)

(1− β̂2 tanh2 ζ)2
≤ 0, (7.13)

thus proving the upper bound. If x ,β > 0 then also ζ > 0 and hence the above holds
with strict inequality.
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For the lower bound, note that ξ′′(0) = 0 and

ξ′′′(ζ) =−
2β̂(1− β̂2)(1− tanh2 ζ)

(1− β̂2 tanh2 ζ)3
�

1− 3(1− β̂2) tanh2 ζ− β̂2 tanh4 ζ
�

≥−
2β̂(1− β̂2)(1− tanh2 ζ)

(1− β̂2)2(1− tanh2 ζ)
=−

2β̂

1− β̂2
. (7.14)

Thus, for some ζ ∈ (0, x),

ξ(x) = ξ(0) + ξ′(0)x + ξ′′(0)
x2

2
+ ξ′′′(ζ)

x3

3!
≥ β̂ x −

2β̂

1− β̂2

x3

3!
. (7.15)

7.4 Critical temperature

In this section we compute the critical temperature.

Proof of Theorem 7.1. Let β∗ = atanh(1/ν). We first show that if β < β∗, then

lim
B↘0

M(β , B) = 0, (7.16)

which implies that βc ≥ β∗. Later, we show that if limB↘0 M(β , B) = 0 then β ≤ β∗,
implying that βc ≤ β∗.

Proof of βc ≥ β∗. Suppose that β < β∗. Then, by the fact that tanh x ≤ x and Wald’s
identity,

M(β , B) = E
�

tanh
�

B+
D
∑

i=1

ξ(hi)
��

≤ B+E[D]E[ξ(h)]. (7.17)

We use the upper bound in Lemma 7.4 to get

E[ξ(h)] = E[atanh(β̂ tanh h)]≤ β̂E[h] = β̂ (B+ νE[ξ(h)]) . (7.18)

Further, note that
E[ξ(h)] = E[atanh(β̂ tanh h)]≤ β , (7.19)

because tanh h≤ 1. Applying inequality (7.18) ` times to (7.17) and subsequently using
inequality (7.19) once gives

M(β , B)≤ B+ Bβ̂E[D]
1− (β̂ν)`

1− β̂ν
+ βE[D](β̂ν)`. (7.20)

Hence,

M(β , B)≤ limsup
`→∞

�

B+ Bβ̂E[D]
1− (β̂ν)`

1− β̂ν
+ βE[D](β̂ν)`

�

= B
�

1+ β̂E[D]
1

1− β̂ν

�

, (7.21)
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because β̂ < β̂∗ = 1/ν . Therefore,

lim
B↘0

M(β , B)≤ lim
B↘0

B
�

1+ β̂E[D]
1

1− β̂ν

�

= 0. (7.22)

This proves the lower bound on βc .

Proof of βc ≤ β∗. We adapt Lyons’ proof in [76] for the critical temperature of deter-
ministic trees to the random tree to show that βc ≤ β∗. Assume that limB↘0 M(β , B) = 0.
Note that Proposition 7.3 shows that the magnetization M(β , B) is equal to the expecta-
tion over the random tree T (D, K ,∞) of the root magnetization. Hence, if we denote the
root of the tree T (D, K ,∞) by φ, then it follows from our assumption on M(β , B) that,
a.s., limB↘0〈σφ〉= 0.

We therefore condition on the tree T = T (D, K ,∞) and assuming limB↘0〈σφ〉 = 0,
implies that also limB↘0 h(φ) = 0. Because of (4.1), we must then have, for all v ∈ T ,

lim
B↘0

lim
`→∞

h`,+(v) = 0, (7.23)

where we can take + boundary conditions, since the recursion converges to a unique
positive fixed point (Theorem 4.1). Now, fix 0 < β0 < β and choose ` large enough and
B small enough such that, for some ε = ε(β0,β)> 0 that we choose later,

h`,+(v)≤ ε, (7.24)

for all v ∈ T with |v| = 1, where |v| denotes the graph distance from φ to v. Note that
h`,+(v) =∞> ε for v ∈ T with |v|= `.

As in [76], we say that Π is a cutset if Π is a finite subset of T \ {φ} and every path
from φ to infinity intersects Π at exactly one vertex v ∈ Π. We write v ≤ Π if every
infinite path from v intersects Π and write σ < Π if σ ≤ Π and σ /∈ Π. Furthermore, we
say that w ← v if {w, v} is an edge in T and |w| = |v|+ 1. Then, since h`,+(v) =∞ > ε
for v ∈ T with |v|= `, there is a unique cutset Π, such that h`,+(v)≤ ε for all v ≤ Π, and
for all v ∈ Π there is at least one w← v such that h`,+(w)> ε.

It follows from the lower bound in Lemma 7.4 that, for v < Π,

h`,+(v) = B+
∑

w←v

ξ(h`,+(w))≥
∑

w←v

β̂h`,+(w)−
β̂h`,+(w)3

3(1− β̂2)

≥
∑

w←v

β̂h`,+(w)
�

1−
ε2

3(1− β̂2)

�

, (7.25)

while, for v ∈ Π,

h`,+(v) = B+
∑

w←v

ξ(tanh h(w))> ξ(ε). (7.26)

If we now choose ε > 0 such that

β̂
�

1−
ε2

3(1− β̂2)2

�

= β̂0, (7.27)
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which is possible because β0 < β , then,

h`,+(φ)≥
∑

v∈Π
β̂
|v|
0 ξ(ε). (7.28)

Since ξ(ε)> 0 and limB↘0 lim`→∞ h`,+(φ) = 0,

inf
Π

∑

v∈Π
β̂
|v|
0 = 0. (7.29)

From [77, Proposition 6.4] it follows that β̂0 ≤ 1/ν . This holds for all β0 < β , so

β ≤ atanh(1/ν) = β∗. (7.30)

This proves the upper bound on βc , thus concluding the proof.

7.5 Continuity of the phase transition

Proof of Proposition 7.2. Note that limB↘0 E[ξ(h(βc , B))] = c exists, because B 7→
E[ξ(h(βc , B))] is non-decreasing and non-negative. Assume, by contradiction, that c > 0.
By the recursion in (4.1), for B > 0,

E[ξ(h(β , B))] = E
�

ξ

�

B+
K
∑

i=1

ξ(hi(β , B))
��

≤ ξ
�

B+ νE[ξ(h(β , B))]
�

, (7.31)

where the inequality holds because of Jensen’s inequality and the concavity of h 7→ ξ(h).
Hence,

c = lim
B↘0

E[ξ(h(βc , B))]≤ lim
B↘0

ξ
�

B+ νE[ξ(h(βc , B))]
�

= ξ(νc). (7.32)

Since ξ(x)< β̂c x for x > 0 by Lemma 7.4 and using β̂c = 1/ν , we obtain

ξ(νc)< β̂cνc = c, (7.33)

leading to a contradiction.
An adaptation of this argument shows the second statement of the lemma. Again

β 7→ E[ξ(h(β , 0+))] is non-decreasing and non-negative and we assume that

lim
β↘βc

E[ξ(h(β , 0+))] = c > 0. (7.34)

Then,

c = lim
β↘βc

E[ξ(h(β , 0+))] = lim
β↘βc

lim
B↘0

E
�

ξ

�

B+
K
∑

i=1

ξ(hi(β , B))
��

≤ lim
β↘βc

lim
B↘0

ξ
�

B+ νE[ξ(h(β , B))]
�

= ξ(νc), (7.35)

leading again to a contradiction when c > 0.
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CRITICAL BEHAVIOR OF THE MAGNETIZATION

In the previous chapter we have computed the value of the critical temperature and
showed that this phase transition is continuous for B = 0+ in the limit β ↘ βc and for
β = βc in the limit B↘ 0. The question remains how fast this convergence is close to the
critical point. This can be described by the critical exponents β and δ respectively, defined
in Definition 3.5. We compute the values of these critical exponents in this chapter.

8.1 Results

The values of the critical exponents β and δ for different values of τ are stated in the
following theorem:

Theorem 8.1 (Critical exponents β and δ). Assume that the random graph sequence
(GN )N≥1 is locally tree-like with asymptotic degree distribution P that obeys E[K3] <∞ or
a power law with exponent τ ∈ (3,5], and is uniformly sparse, or that the random Bethe
tree obeys E[K3]<∞ or a power law with exponent τ ∈ (3, 5]. Then, the critical exponents
β and δ defined in Definition 3.5 exist and satisfy

τ ∈ (3, 5) E[K3]<∞
β 1/(τ− 3) 1/2

δ τ− 2 3

For the boundary case τ = 5 there are logarithmic corrections for β = 1/2 and δ = 3.
Indeed,

M(β , 0+)�
� β − βc

log 1/(β − βc)

�1/2
for β ↘ βc , (8.1)

and

M(βc , B)�
� B

log(1/B)

�1/3
for B↘ 0. (8.2)

The proof of this theorem relies on Taylor expansions performed up to the right order.
For the k-regular random graph we can heuristically compute the critical exponents as
follows. In this case the recursion (4.1) is deterministic and becomes

h= B+ (k− 1)ξ(h), (8.3)
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and β̂c = 1/(k− 1). Hence, by Taylor expanding ξ(h) as in Lemma 7.4,

ξ(h)≈ β̂h−
1

3
β̂(1− β̂2)h3 = β̂B+ β̂(k− 1)ξ(h)−

1

3
β̂(1− β̂2)(B+ (k− 1)ξ(h))3

≈ β̂B+ β̂(k− 1)ξ(h)−
1

3
β̂(1− β̂2)ξ(h)3, (8.4)

where we ignored terms that converge faster to 0 for the limits of interest. When β > βc
by definition limB↘0 h= h0 > 0, so after taking the limit B↘ 0 in (8.4) we can divide by
ξ(h0) to obtain

1≈ β̂(k− 1)−
1

3
β̂(1− β̂2)ξ(h0)

2, (8.5)

so that
ξ(h0)≈ C(β̂(k− 1)− 1)1/2 � (β − βc)

1/2. (8.6)

When we put β = βc in (8.4) for B > 0, we get

ξ(hc)≈ β̂cB+β̂c(k−1)ξ(hc)−
1

3
β̂(1−β̂2)ξ(hc)

3 = β̂cB+ξ(hc)−
1

3
β̂(1−β̂2)ξ(hc)

3, (8.7)

so that
ξ(hc)≈ CB1/3. (8.8)

The critical exponents are now obtained by observing that tanh(x)≈ x for x small.
This explains where the values for the critical exponents β and δ come from, at least

in the case E[K3] < ∞. For the critical exponents for the random graph we follow the
same strategy, but then h is a random variable and higher moments of ξ(h) appear by the
Taylor expansions. Therefore, we first bound these higher moments of ξ(h) in terms of
its first moment in Section 8.3. In Section 8.4 we use these bounds to give appropriate
bounds on E[ξ(h)] which finally allow us to compute the critical exponents β and δ in
Section 8.5.

For τ ∈ (2, 3], we have that βc = 0 as we have seen in the previous chapter. Therefore,
there is not really a phase transition in the sense that there is no point of non-analyticity
of the pressure and speaking about the critical behavior seems odd. Still, we can study
the behavior of M(β , 0+) as β ↘ 0, now describing the behavior of the magnetization in
the infinite temperature limit.

Theorem 8.2 (Infinite temperature limit for τ ∈ (2, 3]). Assume that the random graph
sequence (GN )N≥1 is locally tree-like with asymptotic degree distribution P that obeys a
power law with exponent τ ∈ (2,3], and is uniformly sparse, or that the random Bethe tree
obeys a power law with exponent τ ∈ (2, 3]. Then, for τ ∈ (2, 3),

M(β , 0+)� β1/(3−τ), (8.9)

while for τ= 3,
c0e−1/(ceβ) ≤ M(β , 0+)≤ C0e−1/(Ceβ), (8.10)

for some constants 0< c0, ce, C0, Ce <∞.

This theorem is proved in Section 8.6.
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8.2 Discussion

Relation to the physics literature. Theorems 8.1 and 8.2 confirm the predictions
in [40, 74]. For τ = 5, in [40], also the logarithmic correction for β = 1/2 in (8.1)
is computed, but not that of δ = 3.

Light tails. The case E[K3] <∞ includes all power-law degree distributions with τ >
5, but also cases where P does not obey a power law. This means, e.g., that Theorem 8.1
also identifies the critical exponents for the Erdős-Rényi random graph where the degrees
have an asymptotic Poisson distribution.

Inclusion of slowly varying functions. In Definition 2.2, we have assumed that the
asymptotic degree distribution obeys a perfect power law. Alternatively, one could as-
sume that

∑

`≥k p` � L(k)k−(τ−1) for some function k 7→ L(k) that is slowly varying at
k =∞. For τ > 5 and any slowly varying function, we still have E[K3] <∞, so the re-
sults do not change and Theorem 8.1 still holds. For τ ∈ (3, 5], we expect slowly varying
corrections to the critical behavior in Theorem 8.1. For example, E[K3] <∞ for τ = 5
and L(k) = (log k)−2, so that the logarithmic corrections present for τ= 5 disappear.

Beyond the root magnetization for the random Bethe tree. We have identified the
critical value and some critical exponents for the root magnetization on the random
Bethe tree. The random Bethe tree is a so-called unimodular graph, which is a rooted
graph that often arises as the local weak limit of a sequence of graphs (in this case, the
random graphs (GN )N≥1). See [10, 17] for more background on unimodular graphs and
trees, in particular, T (D, K ,∞) is the so-called unimodular Galton-Watson tree as proved
by Lyons, Pemantle and Peres in [78]. One would expect that the magnetization of the
graph, which can be defined by

MT (β , B) = lim
t→∞

1

|Bφ(t)|

∑

v∈Bφ(t)

σv , (8.11)

where Bφ(t) is the graph induced by vertices at graph distance at most t from the root
φ and |Bφ(t)| is the number of elements in it, also converges a.s. to a limit. However,
we expect that MT (β , B) 6= M(β , B) due to the special role of the root φ, which vanishes
in the above limit. Thus one would expect that MT (β , B) equals the root magnetization
of the tree where each vertex has degree distribution K + 1. Our results show that also
MT (β , B) has the same critical temperature and critical exponents as M(β , B).

Mean-field values. Our results show that locally tree-like random graphs with finite
fourth moment of the degree distribution are in the same universality class as the mean-
field model on the complete graph, which is the Curie-Weiss model [16]. We further
believe that the Curie-Weiss model should enter as the limit of k →∞ for the k-regular
random graph, in the sense that these have the same critical exponents (as we already
know), as well as that all constants arising in asymptotics match up nicely (cf. the dis-
cussion at the end of Section 9.4). These values are also the same for the Ising model on
Zd for d > 4 with possible logarithmic corrections at d = 4 [3].
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Further, our results show that for τ ∈ (3, 5], the Ising model has different critical
exponents than the ones for the Curie-Weiss model, so these constitute a set of different
universality classes.

Potts model. In [41], a mean-field analysis of the Potts model on complex networks
predicts that the system undergoes a first-order phase transition for q ≥ 3 and τ > 3.
Hence, critical exponents for this model are not expected to exist. When τ ∈ (2,3] the
critical temperature is again expected to be infinite so that a phase transition is absent.

8.3 Bounds on higher moments of ξ(h)

Throughout the rest of this chapter we assume that B is sufficiently close to zero and
βc < β < βc + ε for ε sufficiently small. We write ci , Ci , i ≥ 1 for constants that only
depend on β and moments of K , and satisfy

0< lim inf
β↘βc

Ci(β)≤ limsup
β↘βc

Ci(β)<∞. (8.12)

Here Ci appears in upper bounds, while ci appears in lower bounds. Furthermore, we
write ei , i ≥ 1, for error functions that only depend on β , B,E[ξ(h)] and moments of K ,
and satisfy

limsup
B↘0

ei(β , B)<∞ and lim
B↘0

ei(βc , B) = 0. (8.13)

Finally, we write νk = E[K(K − 1) · · · (K − k+ 1)] for the kth factorial moment of K , so
that ν1 = ν .

Lemma 8.3 (Bounds on second moment of ξ(h)). Let β ≥ βc and B > 0. Then,

E[ξ(h)2]≤















C2E[ξ(h)]2 + Be2 when E[K2]<∞,

C2E[ξ(h)]2 log (1/E[ξ(h)]) + Be2 when τ= 4,

C2E[ξ(h)]τ−2 + Be2 when τ ∈ (3,4).

(8.14)

Proof. We first treat the case E[K2] <∞. We use Lemma 7.4 and the recursion in (4.1)
to obtain

E[ξ(h)2]≤ β̂2E[h2] = β̂2E
��

B+
K
∑

i=1

ξ(hi)
�2�

= β̂2
�

B2 + 2BνE[ξ(h)] + ν2E[ξ(h)]2 + νE[ξ(h)2]
�

. (8.15)

Since 1− β̂2ν > 0, because β is sufficiently close to βc and β̂c = 1/ν < 1, the lemma
holds with

C2 =
β̂2ν2

1− β̂2ν
, and e2 =

Bβ̂2 + 2β̂2νE[ξ(h)]
1− β̂2ν

. (8.16)

It is not hard to see that (8.12) holds. For e2 the first property of (8.13) can also easily
be seen. The second property in (8.13) follows from Proposition 7.2.
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If τ ≤ 4, then E[K2] = ∞ and the above does not work. To analyze this case, we
apply the recursion (4.1) and split the expectation over K in small and large degrees:

E[ξ(h)2] = E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�2

1{K≤`}

�

+E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�2

1{K>`}

�

. (8.17)

We use Lemma 7.4 to bound the first term as follows:

E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�2

1{K≤`}

�

≤ β̂2E
��

B+
K
∑

i=1

ξ(hi)
�2

1{K≤`}

�

(8.18)

≤ β̂2
�

B2 + 2BνBE[ξ(h)] +E[K21{K≤`}]E[ξ(h)]2 + νE[ξ(h)2]
�

.

For τ ∈ (3,4),
E[K21{K≤`}]≤ C2,τ`

4−τ, (8.19)

by Lemma 2.7, while for τ= 4,

E[K21{K≤`}]≤ C2,4 log`. (8.20)

To bound the second sum in (8.17), note that ξ(h)≤ β . Hence,

E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�2

1{K>`}

�

≤ β2E[1{K>`}]≤ C0,τβ
2`2−τ. (8.21)

The optimal bound (up to a constant) can be achieved by choosing ` such that
`4−τE[ξ(h)]2 and `2−τ are of the same order of magnitude. Hence, we choose ` =
1/E[ξ(h)]. Combining the two upper bounds then gives the desired result with

C2 =
1

1− β̂2ν

�

C2,τβ̂
2 + C0,τβ

2
�

, (8.22)

where we have also used that E[ξ(h)]2 ≤ E[ξ(h)]2 log(1/E[ξ(h)]), and

e2 =
Bβ̂2 + 2β̂2νE[ξ(h)]

1− β̂2ν
. (8.23)

Remark 8.4. In the previous lemma, we showed that the correct value for the truncation
is ` = 1/E[ξ(h)]. It turns out that this is always the correct order of magnitude, but we
sometimes need to truncate at `= ε/E[ξ(h)] for ε small.

We next derive upper bounds on the third moment of ξ(h):

Lemma 8.5 (Bounds on third moment of ξ(h)). Let β ≥ βc and B > 0. Then,

E[ξ(h)3]≤















C3E[ξ(h)]3 + Be3 when E[K3]<∞,

C3E[ξ(h)]3 log (1/E[ξ(h)]) + Be3 when τ= 5,

C3E[ξ(h)]τ−2 + Be3 when τ ∈ (3, 5).

(8.24)
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Proof. For E[K3]<∞ we bound, in a similar way as in Lemma 8.3,

E[ξ(h)3]≤ β̂3
�

B3 + 3B2νE[ξ(h)] + 3Bν2E[ξ(h)]2 + 3BνE[ξ(h)2] (8.25)

+ ν3E[ξ(h)]3 + 3ν2E[ξ(h)]E[ξ(h)2] + β̂3νE[ξ(h)3]
�

.

Using (8.14), we indeed get the bound

E[ξ(h)3]≤ C3E[ξ(h)]3 + Be3, (8.26)

where

C3 =
β̂3

1− β̂3ν

�

ν3 + 3ν2C2
�

, (8.27)

and

e3 =
β̂3

1− β̂3ν

�

B2 + 3Bνe2 + 3
�

Bν + ν2e2
�

E[ξ(h)] + 3
�

ν2 + νC2
�

E[ξ(h)]2
�

. (8.28)

For τ ∈ (3,5], we use the recursion (4.1) and the expectation split in small and large
values of K to obtain

E[ξ(h)3] = E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�3

1{K≤b1/E[ξ(h)]c}

�

+E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�3

1{K>b1/E[ξ(h)]c}

�

.

(8.29)
We bound the first sum from above by

β̂3E
��

B+
K
∑

i=1

ξ(hi)
�3

1{K≤b1/E[ξ(h)]c}

�

= β̂3
�

B3 + 3B2E[K1{K≤b1/E[ξ(h)]c}]E[ξ(h)] + 3BE[K(K − 1)1{K≤b1/E[ξ(h)]c}]E[ξ(h)2]

+ 3BE[K1{K≤b1/E[ξ(h)]c}]E[ξ(h)2] +E[K(K − 1)(K − 2)1{K≤b1/E[ξ(h)]c}]E[ξ(h)]3

+ 3E[K(K − 1)1{K≤b1/E[ξ(h)]c}]E[ξ(h)]E[ξ(h)2] +E[K1{K≤b1/E[ξ(h)]c}]E[ξ(h)3]
�

.

By Lemma 2.7, for τ ∈ (3, 5),

E[K31{K≤b1/E[ξ(h)]c}]≤ C3,τE[ξ(h)]τ−5, (8.30)

while, for τ= 5,

E[K31{K≤b1/E[ξ(h)]c}]≤ C3,5
�

1+ log (1/E[ξ(h)])
�

. (8.31)

Similarly, by Lemma 2.7, for τ ∈ (3,4),

E[K21{K≤b1/E[ξ(h)]c}]≤ C2,τE[ξ(h)]τ−4, (8.32)

while, for τ= 4,

E[K21{K≤b1/E[ξ(h)]c}]≤ C2,4
�

1+ log (1/E[ξ(h)])
�

. (8.33)

For the other terms we can replace the upper bound in the sum by infinity and use
the upper bound on E[ξ(h)2] of Lemma 8.3. For the second sum in (8.29) we bound
ξ(x) ≤ β , so that this sum is bounded from above by C0,τE[ξ(h)]τ−2. Combining these
bounds gives the desired result.
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8.4 Bounds on the first moment of ξ(h)

Proposition 8.6 (Upper bound on first moment of ξ(h)). Let β ≥ βc and B > 0. Then,
there exists a C1 > 0 such that

E[ξ(h)]≤ βB+ β̂νE[ξ(h)]− C1E[ξ(h)]δ, (8.34)

where

δ =







3 when E[K3]<∞,

τ− 2 when τ ∈ (3,5].
(8.35)

For τ= 5,
E[ξ(h)]≤ βB+ β̂νE[ξ(h)]− C1E[ξ(h)]3 log (1/E[ξ(h)]) . (8.36)

Proof. We first use recursion (4.1) and rewrite it as

E[ξ(h)] = E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
��

= β̂B+ β̂νE[ξ(h)] + T1 + T2, (8.37)

where
T1 = E

h

ξ
�

B+ KE[ξ(h)]
�

− β̂ (B+ KE[ξ(h)])
i

, (8.38)

and

T2 = E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�

− ξ (B+ KE[ξ(h)])
�

. (8.39)

Here, T1 can be seen as the error of a first-order Taylor series approximation around 0 of
ξ (B+ KE[ξ(h)]), whereas T2 is the error made by replacing ξ(hi) by its expected value
in the sum. By concavity of x 7→ ξ(x), both random variables in the expectation of T1
and T2 are non-positive. In particular, T2 ≤ 0, which is enough for our purposes. We next
bound T1 in the cases where E[K3]<∞, τ ∈ (3,5), and τ= 5 separately.

Bound on T1 when E[K3]<∞. To bound T1 for E[K3]<∞ we use that, a.s.,

ξ (B+ KE[ξ(h)])− β̂ (B+ KE[ξ(h)])≤ 0, (8.40)

which follows from Lemma 7.4. Hence,

T1 ≤ E
h

�

ξ (B+ KE[ξ(h)])− β̂ (B+ KE[ξ(h)])
�

1{B+KE[ξ(h)]≤atanh 1
2
}

i

. (8.41)

Since ξ′′(0) = 0, it follows from Taylor’s theorem that, a.s.,

ξ (B+ KE[ξ(h)])− β̂ (B+ KE[ξ(h)]) =
ξ′′′(ζ)

6
(B+ KE[ξ(h)])3 , (8.42)

for some ζ ∈ (0, B+ KE[ξ(h)]). If B+ KE[ξ(h)]≤ atanh 1
2
, then

ξ′′′(ζ) =−
2β̂(1− β̂2)(1− tanh2 ζ)

(1− β̂2 tanh2 ζ)3
�

1− 3(1− β̂2) tanh2 ζ− β̂2 tanh4 ζ
�

≤−
9

32
β̂(1− β̂2). (8.43)
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Hence,

T1 ≤−
3

64
β̂(1− β̂2)E

h

(B+ KE[ξ(h)])3 1{B+KE[ξ(h)]≤atanh 1
2
}

i

≤−
3

64
β̂(1− β̂2)E[K31{KE[ξ(h)]≤atanh 1

2
−B}]E[ξ(h)]

3. (8.44)

Bound on T1 when τ ∈ (3, 5]. For τ ∈ (3,5], we make the expectation over K explicit:

T1 =
∞
∑

k=0

ρk

�

ξ (B+ kE[ξ(h)])− β̂ (B+ kE[ξ(h)])
�

, (8.45)

where it should be noted that all terms in this sum are negative because of Lemma 7.4.
Define f (k) = ξ (B+ kE[ξ(h)])− β̂ (B+ kE[ξ(h)]) and note that f (k) is non-increasing.
We use (2.15) and Lemma 2.6 to rewrite

T1 =
∞
∑

k=0

f (k)ρk = f (0) +
∑

k≥1

[ f (k)− f (k− 1)]ρ≥k

≤ f (0) + cρ
∑

k≥1

[ f (k)− f (k− 1)](k+ 1)−(τ−2). (8.46)

Then, use (2.15) in reverse to rewrite this as

T1 ≤ f (0) + cρ
∑

k≥0

f (k)[k−(τ−2) − (k+ 1)−(τ−2)]

≤ f (0)(1− cρ
∑

k≥1

k−τ) + (τ− 1)cρ
∑

k≥0

f (k)(k+ 1)−(τ−1). (8.47)

Hence, with e = f (0)(1− cρ
∑

k≥1 k−τ)/B,

T1 ≤ eB+ (τ− 1)cρ (E[ξ(h)])
τ−1

×
∞
∑

k=0

((k+ 1)E[ξ(h)])−(τ−1)
�

ξ (B+ kE[ξ(h)])− β̂ (B+ kE[ξ(h)])
�

≤ eB+ (τ− 1)cρ (E[ξ(h)])
τ−1 (8.48)

×
b/E[ξ(h)]
∑

k=a/E[ξ(h)]
(kE[ξ(h)])−(τ−1)

�

ξ (B+ kE[ξ(h)])− β̂ (B+ kE[ξ(h)])
�

,

where we choose a and b such that 0 < a < b < ∞. We use dominated convergence
on the above sum. The summands are uniformly bounded, and E[ξ(h)] → 0 for both
limits of interest. Further, when kE[ξ(h)] = y , the summand converges pointwise to
y−(τ−1)

�

ξ
�

B+ y
�

− β̂
�

B+ y
�

�

. Hence, we can write the sum above as

E[ξ(h)]−1
�
∫ b

a

y−(τ−1)
�

ξ
�

B+ y
�

− β̂
�

B+ y
�

�

dy + o(1)
�

, (8.49)

where o(1) is a function tending to zero for both limits of interest [67, 216 A]. The
integrand is uniformly bounded for y ∈ [a, b] and hence we can bound the integral from
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above by a (negative) constant −I for B sufficiently small and β sufficiently close to βc .
Hence,

E[ξ(h)]≤ β̂B+ β̂νE[ξ(h)]− (τ− 1)cρ IE[ξ(h)]τ−2. (8.50)

Logarithmic corrections in the bound for τ= 5. We complete the proof by identifying
the logarithmic correction for τ = 5. Since the random variable in the expectation in T1
is non-positive, we can bound

T1 ≤ E
�

ξ (B+ KE[ξ(h)])− β̂ (B+ KE[ξ(h)])1{K≤ε/E[ξ(h)]}
�

. (8.51)

Taylor expanding h 7→ ξ(h) to third order, using that ξ(0) = ξ′′(0) = 0, while the linear
term cancels, leads to

T1 ≤ E
�

ξ′′′(ζ)
6
(B+ KE[ξ(h)])3 1{K≤ε/E[ξ(h)]}

�

, (8.52)

for some ζ ∈ (0, KE[ξ(h)]). On the event that K ≤ ε/E[ξ(h)], we thus have that ζ ∈
(0,ε), and ξ′′′(ζ)≥ cε ≡ infx∈(0,ε) ξ

′′′(x) when ε is sufficiently small. Thus,

T1 ≤
cε
6
E
�

(B+ KE[ξ(h)])3 1{K≤ε/E[ξ(h)]}
�

(8.53)

≤
cε
6
E[ξ(h)]3E

�

K(K − 1)(K − 2)1{K≤ε/E[ξ(h)]}
�

.

When τ = 5, it holds that E
�

K(K − 1)(K − 2)1{K≤`}
�

≥ c3,5 log`, as we show now. We
compute, using (2.15) with f (k) = k(k− 1)(k− 2),

E
�

K(K − 1)(K − 2)1{K≤`}
�

=
∞
∑

k=1

[ f (k)− f (k− 1)]
∑̀

i=k

ρi =
∞
∑

k=3

3(k− 1)(k− 2)
∑̀

i=k

ρi .

(8.54)
We bound this from below by

E
�

K(K − 1)(K − 2)1{K≤`}
�

≥

p
∑̀

k=0

3(k− 1)(k− 2)[ρ≥k −ρ≥`]. (8.55)

By Lemma 2.6, for τ= 5, the contribution due to ρ≥` is at most

`3/2ρ≥` ≤ Cρ`
−3/2 = o(1), (8.56)

while the contribution due to ρ≥k and using 3(k− 1)(k− 2) ≥ k2 for every k ≥ 4, is at
least

cρ

p
∑̀

k=4

k−1 ≥ cρ

∫

p
`+1

4

dx

x
= cρ[log (

p

`+ 1)− log 4], (8.57)

which proves the claim by choosing the constant c3,5 correctly.

Proposition 8.7 (Lower bound on first moment of ξ(h)). Let β ≥ βc and B > 0. Then,
there exists a constant C2 > 0 such that

E[ξ(h)]≥ βB+ β̂νE[ξ(h)]− c1E[ξ(h)]δ − Be1, (8.58)
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where

δ =







3 when E[K3]<∞,

τ− 2 when τ ∈ (3,5).
(8.59)

For τ= 5,

E[ξ(h)]≥ βB+ β̂νE[ξ(h)]− C2E[ξ(h)]3 log(1/E[ξ(h)])− Be1. (8.60)

Proof. We again use the split in (8.37) and we bound T1 and T2.

The lower bound on T1. For E[K3]<∞, we use the lower bound of Lemma 7.4 to get

T1 ≥−
β̂

3(1− β̂2)
E
�

(B+ KE[ξ(h)])3
�

. (8.61)

By expanding, this can be rewritten as

T1 ≥−
β̂

3(1− β̂2)
E[K3]E[ξ(h)]3 − Be4. (8.62)

For τ ∈ (3,5], we first split T1 in a small K and a large K part. For this, write

t1(k) = ξ (B+ kE[ξ(h)])− β̂ (B+ kE[ξ(h)]) . (8.63)

Then,

T1 = E[t1(K)] = E
�

t1(K)1{K≤ε/E[ξ(h)]}
�

+E
�

t1(K)1{K>ε/E[ξ(h)]}
�

. (8.64)

To bound the first term, we again use (8.61):

E
�

t1(K)1{K≤ε/E[ξ(h)]}
�

≥−
β̂

3(1− β̂2)
E
�

(B+ KE[ξ(h)])31{K≤ε/E[ξ(h)]}
�

. (8.65)

It is easy to see that the terms B3E
�

1{K>ε/E[ξ(h)]}
�

and 3B2E[ξ(h)]E
�

K1{K≤ε/E[ξ(h)]}
�

that we get by expanding the above are of the form Be. To bound the other two terms,
we use Lemma 2.7 to obtain, for ε ≤ 1,

3BE[ξ(h)]2E
�

K21{K≤ε/E[ξ(h)]}
�

≤















3BE[ξ(h)]2E
�

K2
�

when τ ∈ (4,5],

3BC2,4E[ξ(h)]2 log(1/E[ξ(h)]) when τ= 4,

3BC2,τE[ξ(h)]τ−2 when τ ∈ (3, 4),
(8.66)

which are all of the form Be, and

E
�

K31{K≤ε/E[ξ(h)]}
�

E[ξ(h)]3 ≤







C3,5E[ξ(h)]3 log(1/E[ξ(h)]) when τ= 5,

C3,τE[ξ(h)]τ−2 when τ ∈ (3, 5).

(8.67)
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To bound T1 for large K , we observe that

E
�

t1(K)1{K>ε/E[ξ(h)]}
�

≥−β̂BE[1{K>ε/E[ξ(h)]}]− β̂E[ξ(h)]E[K1{K>ε/E[ξ(h)]}]. (8.68)

Applying Lemma 2.7 now gives, for τ ∈ (3, 5]

E
�

t1(K)1{K>ε/E[ξ(h)]}
�

≥−β̂BC0,τE[ξ(h)]τ−2 − β̂C1,τE[ξ(h)]τ−2

=−C4E[ξ(h)]τ−2 − Be4. (8.69)

The lower bound on T2. To bound T2, we split in a small and a large K contribution:

T2 = E[t2(K)1{K≤ε/E[ξ(h)]}] +E[t2(K)1{K>ε/E[ξ(h)]}]≡ T ≤2 + T >

2 , (8.70)

where

t2(k) = ξ
�

B+
k
∑

i=1

ξ(hi)
�

− ξ (B+ kE[ξ(h)]) . (8.71)

To bound T >

2 , we note that

t2(k)≥−β , (8.72)

so that

T >

2 ≥−βE[1{K>ε/E[ξ(h)]}]≥−C5E[ξ(h)](τ−2)∧3, (8.73)

where we have used Lemma 2.7 in the last inequality and the Markov inequality when
E[K3]<∞.

It remains to bound T ≤2 . This can also be seen as a Taylor expansion of ξ(B +
∑K

i=1 ξ(hi)) around B+ KE[ξ(h)]. Note that, a.s.,

E
�

ξ′(B+ KE[ξ(h)])
� K
∑

i=1

ξ(hi)− KE[ξ(h)]
�

�

�

� K
�

= 0, (8.74)

and hence also the expectation over K of the above equals 0. Thus, for some ζ ∈
�

B+
∑K

i=1 ξ(hi), B+ KE[ξ(h)]
�

,

T ≤2 = E
�

ξ′′(ζ)
2

� K
∑

i=1

ξ(hi)− KE[ξ(h)]
�2

1{K≤ε/E[ξ(h)]}

�

. (8.75)

We use that, for some ζ in between B+
∑K

i=1 ξ(hi) and B+ KE[ξ(h)],

ξ′′(ζ)≥−
2β̂

1− β̂2

�

B+
K
∑

i=1

ξ(hi) + KE[ξ(h)]
�

, (8.76)



66 CRITICAL BEHAVIOR OF THE MAGNETIZATION

to obtain

T ≤2 ≥−
β̂

1− β̂2
E
��

B+
K
∑

i=1

ξ(hi) + KE[ξ(h)]
�� K
∑

i=1

ξ(hi)− KE[ξ(h)]
�2

1{K≤ε/E[ξ(h)]}

�

≥−
β̂

1− β̂2

�

BνE
�

(ξ(h)−E[ξ(h)])2
�

+E[K1{K≤ε/E[ξ(h)]}]E
�

(ξ(h)−E[ξ(h)])3
�

+ 2E[K21{K≤ε/E[ξ(h)]}]E[ξ(h)]E
�

(ξ(h)−E[ξ(h)])2
�

�

≥−
β̂

1− β̂2

�

BνE[ξ(h)2] + 2E[K21{K≤ε/E[ξ(h)]}]E[ξ(h)]E[ξ(h)2] + νE[ξ(h)3]
�

.

(8.77)

Using the bounds of Lemmas 8.3 and 8.5 we get,

T ≤2 ≥























− β̂

1−β̂2

�

2E[K2]C2 + C3ν
�

E[ξ(h)]3 − Be5 when E[K3]<∞,

− β̂

1−β̂2

�

2E[K2]C2 + C3ν
�

E[ξ(h)]3 log(1/E[ξ(h)])− Be5 when τ= 5,

− β̂

1−β̂2

�

C ′2,τ + C3ν
�

E[ξ(h)]τ−2 − Be5 when τ ∈ (3, 5),
(8.78)

where C ′2,τ = E[K2]C2 for τ ∈ (4,5) and C ′2,τ = C2 for τ ∈ (3,4]. Here, we have also
used that (a) E[ξ(h)]3 ≤ E[ξ(h)]3 log(1/E[ξ(h)]) for τ= 5; (b) E[ξ(h)]3 ≤ E[ξ(h)]τ−2

for τ ∈ (4, 5]; and (c) E[K21{K≤ε/E[ξ(h)]}]E[ξ(h)]≤ εν ≤ ν for τ ∈ (3, 4].
Combining the bounds on T1 and T2 gives the desired lower bound on E[ξ(h)].

8.5 The critical exponents β and δ

It remains to show that the bounds on E[ξ(h)] give us the desired result:

Theorem 8.8 (Values of β and δ). The critical exponent β equals

β =
�

1/2 when E[K3]<∞,
1/(τ− 3) when τ ∈ (3,5), (8.79)

and the critical exponent δ equals

δ =
�

3 when E[K3]<∞,
τ− 2 when τ ∈ (3, 5). (8.80)

For τ= 5,

M(β , 0+)�
�

β − βc

log (1/(β − βc))

�1/2

for β ↘ βc , (8.81)

and

M(βc , B)�
�

B

log(1/B)

�1/3

for B↘ 0. (8.82)

Proof. We prove the upper and the lower bounds separately, starting with the upper
bound.
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The upper bounds on the magnetization. We start by bounding the magnetization
from above:

M(β , B) = E
�

tanh
�

B+
D
∑

i=1

ξ(hi)
��

≤ B+E[D]E[ξ(h)]. (8.83)

We first perform the analysis for β. Taking the limit B ↘ 0 in (8.34) in Proposition 8.6
yields

E[ξ(h0)]≤ β̂νE[ξ(h0)]− C1E[ξ(h0)]
δ, (8.84)

where h0 = h(β , 0+). For β > βc , by definition, E[ξ(h0)] > 0 and thus we can divide by
E[ξ(h0)] to obtain

E[ξ(h0)]
δ−1 ≤

β̂ν − 1

C1
. (8.85)

By Taylor’s theorem,
β̂ν − 1≤ ν(1− β̂2

c )(β − βc). (8.86)

Hence,

E[ξ(h0)]≤
�

ν(1− β̂2
c )

C1

�1/(δ−1)

(β − βc)
1/(δ−1). (8.87)

Using that β = 1/(δ− 1),

M(β , 0+)≤ E[D]
�

ν(1− β̂2
c )

C1

�β

(β − βc)
β, (8.88)

from which it easily follows that

limsup
β↘βc

M(β , 0+)
(β − βc)β

<∞. (8.89)

We complete the analysis for β by analyzing τ = 5. Since (8.34) also applies to τ = 5,
(8.89) holds as well. We now improve upon this using (8.36) in Proposition 8.6, which
yields in a similar way as above that

E[ξ(h0)]
2 ≤

β̂ν − 1

C1 log(1/E[ξ(h0)])
. (8.90)

Since x 7→ 1/ log(1/x) is increasing on (0, 1) and E[ξ(h0)] ≤ C(β − βc)1/2 for some
C > 0, we immediately obtain that

E[ξ(h0)]
2 ≤

β̂ν − 1

C1 log(1/E[ξ(h0)])
≤

β̂ν − 1

C1 log(1/[C(β − βc)1/2])
. (8.91)

Taking the limit of β ↘ βc as above then completes the proof.
We continue with the analysis for δ. Setting β = βc in (8.34) and rewriting gives

E[ξ(hc)]≤
�

β̂c

C1

�1/δ

B1/δ, (8.92)
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with hc = h(βc , B). Hence,

M(βc , B)≤ B+E[D]
�

β̂c

C1

�1/δ

B1/δ, (8.93)

so that, using 1/δ < 1,

limsup
B↘0

M(βc , B)

B1/δ
<∞. (8.94)

The analysis for δ for τ= 5 can be performed in an identical way as for β.

The lower bounds on the magnetization. For the lower bound on the magnetization
we use that

d2

dx2 tanh x =−2 tanh x(1− tanh2 x)≥−2, (8.95)

so that
tanh x ≥ x − x2. (8.96)

Hence,

M(β , B)≥ B+E[D]E[ξ(h)]−E
��

B+
D
∑

i=1

ξ(hi)
�2�

≥ B+E[D]E[ξ(h)]− Be6 −E[D(D− 1)]E[ξ(h)]2 −E[D]C2E[ξ(h)]2∧(τ−2)

= B+ (E[D]− e7)E[ξ(h)]− Be6, (8.97)

with a∧ b denoting the minimum of a and b, because E[ξ(h)] converges to zero for both
limits of interest.

We again first perform the analysis for β and τ 6= 5. We get from (8.58) in Proposi-
tion 8.7 that

E[ξ(h0)]≥
�

β̂ν − 1

c1

�1/(δ−1)

≥
�

ν(1− β̂2)
c1

�β

(β − βc)
β, (8.98)

where the last inequality holds because, by Taylor’s theorem,

β̂ν − 1≥ ν(1− β̂2)(β − βc). (8.99)

Hence,

lim inf
β↘βc

M(β , 0+)
(β − βc)β

≥ E[D]
�

ν(1− β̂2)
c1

�β

> 0. (8.100)

For τ = 5, we note that (8.60) as well as the fact that log 1/x ≤ Aε x−ε for all x ∈ (0,1)
and some Aε > 0, yields that

E[ξ(h0)]≥
�

β̂ν − 1

Aεc1

�1/(2+ε)

≥
�

ν(1− β̂2)
Aεc1

�1/(2+ε)

(β − βc)
1/(2+ε). (8.101)
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Then again using (8.60) yields, for some constant c > 0,

E[ξ(h0)]≥
�

β̂ν − 1

c1 log(1/E[ξ(h0)])

�1/2

≥ c
�

β − βc

log(1/(β − βc))

�1/2

, (8.102)

once more since x 7→ 1/(log(1/x)) is increasing.
We continue with the analysis for δ. Again, setting β = βc in (8.58), we get

E[ξ(hc)]≥
�

β̂c − e1

c1

�1/δ

B1/δ, (8.103)

from which it follows that

lim inf
B↘0

M(βc , B)

B1/δ
≥ E[D]

�

β̂c

c1

�1/δ

> 0, (8.104)

as required. The extension to τ = 5 can be dealt with in an identical way as in (8.101)–
(8.102). This proves the theorem.

8.6 Infinite temperature behavior for τ ∈ (2, 3]

We start with proving the upper bound:

Proposition 8.9 (Upper bound for τ ∈ (2, 3]). For τ ∈ (2,3),

M(β , 0+)≤ E[D](C1,τ + C0,τ)
1/(3−τ)β1/(3−τ), (8.105)

while for τ= 3,
M(β , 0+)≤ E[D]e−1/((C1,3+C0,3)β). (8.106)

Proof. We bound the first moment of ξ(h) by splitting the analysis for K small and K
large:

E[ξ(h)] = E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
��

(8.107)

= E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�

1{K≤1/E[ξ(h)]}

�

+E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�

1{K>1/E[ξ(h)]}

�

.

For the small K term, we use the upper bound of Lemma 7.4:

E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�

1{K≤1/E[ξ(h)]}

�

≤ β̂B+ β̂E[K1{K≤1/E[ξ(h)]}]E[ξ(h)] (8.108)

and for the large K term we use ξ(h)≤ β a.s.:

E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
�

1{K>1/E[ξ(h)]}

�

≤ βE[1{K>1/E[ξ(h)]}]. (8.109)
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Combining the above two equations and applying Lemma 2.7 gives, for τ ∈ (2, 3),

E[ξ(h)]≤ β̂B+ β(C1,τ + C0,τ)E[ξ(h)]τ−2, (8.110)

where we also used that β̂ ≤ β . Taking the limit B ↘ 0 and dividing by E[ξ(h0)] then
gives

E[ξ(h0)]≤ (C1,τ + C0,τ)
1/(3−τ)β1/(3−τ). (8.111)

Observing that

lim
B↘0

M(β , B) = lim
B↘0

E
�

tanh
�

B+
D
∑

i=1

ξ(hi)
��

≤ lim
B↘0

B+E[D]E[ξ(h)] = E[D]E[ξ(h0)],

(8.112)
now gives the desired result for τ ∈ (2,3).

Applying Lemma 2.7 for τ= 3 gives

E[ξ(h)]≤ β̂B+ β̂C1,3E[ξ(h)] log(1/E[ξ(h)]) + βC0,3E[ξ(h)]
≤ β̂B+ β(C1,3 + C0,3)E[ξ(h)] log(1/E[ξ(h)]). (8.113)

Again taking the limit B↘ 0 and dividing by E[ξ(h0)] gives

E[ξ(h0)]≤ e−1/((C1,3+C0,3)β), (8.114)

which gives the desired result after plugging this into (8.112).

It remains to compute the lower bound:

Proposition 8.10 (Lower bound for τ ∈ (2, 3]). For τ ∈ (2,3),

M(β , 0+)≥ c0β
1/(3−τ), (8.115)

for some constant 0< c0 <∞, while for τ= 3,

M(β , 0+)≥ c0e−1/(ceβ), (8.116)

for some constants 0< c0, ce <∞.

Proof. We can bound

E[ξ(h)] = E
�

ξ

�

B+
K
∑

i=1

ξ(hi)
��

≥ E
�

ξ

� K
∑

i=1

ξ(hi)
�

1{K≤ε/E[ξ(h)]}

�

. (8.117)

We use a Taylor expansion up to the second order and use that ξ′′(ζ)≥−2β/(1− β̂2) to
obtain

E
�

ξ

� K
∑

i=1

ξ(hi)
�

1{K≤ε/E[ξ(h)]}

�

≥ E
��

β̂

K
∑

i=1

ξ(hi)−
β̂

1− β̂2

� K
∑

i=1

ξ(hi)
�2�

1{K≤ε/E[ξ(h)]}

�

= β̂E[K1{K≤ε/E[ξ(h)]}]E[ξ(h)]−
β̂

1− β̂2
E[K(K − 1)1{K≤ε/E[ξ(h)]}]E[ξ(h)]2

−E[K1{K≤ε/E[ξ(h)]}]E[ξ(h)2]. (8.118)
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For a lower bound on the truncated first moment of K note that

E[K1{K≤`}] =
b`c
∑

k=1

kρk =
b`c
∑

k=1

b`c
∑

i=k

ρk =
b`c
∑

k=1

[ρ≥k −ρ>`]≥
bδ`c
∑

k=1

[ρ≥k −ρ≥`], (8.119)

for some 0< δ ≤ 1. From Lemma 2.6 we know that

cρk−(τ−2) ≤ ρ≥k ≤ Cρk−(τ−2). (8.120)

Hence, for τ ∈ (2, 3),

E[K1{K≤`}]≥ cρ

bδ`c
∑

k=1

k−(τ−2) −δCρ`
3−τ ≥ cρ

∫ δ`

1

k−(τ−2)dk−δCρ`
3−τ

=
cρ

3−τ
�

(δ`)3−τ − 1
�

−δCρ`
3−τ, (8.121)

which gives, by choosing δ small enough,

E[K1{K≤`}]≥ c1,τ`
3−τ, (8.122)

for some constant c1,τ > 0.
The other truncated moments in (8.118) can be bounded using Lemma 2.7. Further-

more, we use that ξ(h)≤ β a.s., so that E[ξ(h)2]≤ βE[ξ(h)].
Using all these bounds on (8.118) gives, for τ ∈ (2,3),

E[ξ(h)]≥ c1,τε
3−τβ̂E[ξ(h)]τ−2 −

C2,τε
4−τ

1− β̂2
β̂E[ξ(h)]τ−2 −

βε3−τ

1− β̂2
β̂E[ξ(h)]τ−2

=
�

c1,τ −
C2,τε

1− β̂2
−

β

1− β̂2

�

ε3−τβ̂E[ξ(h)]τ−2 ≥ c1βE[ξ(h)]τ−2, (8.123)

for some c1 > 0 if ε and β are small enough. Taking the limit B ↘ 0 and dividing by
E[ξ(h0)] then gives

E[ξ(h0)]≥ c3−τ
1 β1/(3−τ). (8.124)

To show that the magnetization has the same behavior, we truncate and use that tanh x ≥
x − x2,

M(β , B) = E
�

tanh
�

B+
D
∑

i=1

ξ(hi)
��

≥ E
�

tanh
� D
∑

i=1

ξ(hi)
�

1{D≤1/E[ξ(h)]}

�

≥ E
�� D
∑

i=1

ξ(hi)−
�

D
∑

i=1

ξ(hi)
�2
�

1{D≤1/E[ξ(h)]}

�

= E[D1{D≤1/E[ξ(h)]}]E[ξ(h)]−E[D(D− 1)1{D≤1/E[ξ(h)]}]E[ξ(h)]2

−E[D1{D≤1/E[ξ(h)]}]E[ξ(h)2]. (8.125)

Using Lemma 2.7 and ξ(h)≤ β , we get

M(β , B)≥ E[D1{D≤1/E[ξ(h)]}]E[ξ(h)]− C2,τE[ξ(h)]τ−1 −E[D1{D≤1/E[ξ(h)]}]E[ξ(h)2]

≥
�

(1− β)E[D1{D≤1/E[ξ(h)]}]− C2,τβ
τ−2
�

E[ξ(h)]. (8.126)
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Taking the limit B↘ 0 and plugging in (8.124) gives the result.
For τ= 3,

E[K1{K≤`}] =
b`c
∑

k=1

[ρ≥k −ρ>`]≥ cρ

b`c
∑

k=1

k−(τ−2) − Cρ

≥ cρ

∫ `

1

k−1dk− Cρ = cρ log`− Cρ ≥ c1,3 log`, (8.127)

for ` large enough and some c1,3 > 0. The rest of the analysis is similar to that of the case
where τ ∈ (2, 3).



9
CRITICAL BEHAVIOR OF THE SUSCEPTIBILITY

We now turn to the critical behavior of the susceptibility. It is expected that the suscep-
tibility χ(β , 0+) blows up as β → βc . We show in this chapter that this is indeed the
case, proving that the phase transition is of second order, because the second derivative
of the pressure with respect to B is non-analytic in (βc , 0+). We also quantify how fast the
convergence to infinity is in the high-temperature regime, i.e., for β ↗ βc , by identifying
the critical exponent γ. For the low temperature limit β ↘ βc we are not able to compute
the critical exponent γ′, but we do give a lower bound and present a heuristic argument
why the corresponding upper bound should also hold.

9.1 Results

For the susceptibility in the subcritical phase, i.e., in the high-temperature region β < βc ,
we can not only identify the critical exponent γ, but we can also identify the constant:

Theorem 9.1 (Critical exponent γ). Assume that the random graph sequence (GN )N≥1
is locally tree-like with asymptotic degree distribution P that obeys E[K] < ∞. Then, for
β < βc ,

χ(β , 0+) = 1+
E[D]β̂
1− νβ̂

. (9.1)

In particular,

lim
β↗βc

χ(β , 0+)(βc − β) =
E[D]β̂c

1− β̂2
c

, (9.2)

and hence
γ = 1. (9.3)

For the supercritical susceptibility, we prove the following lower bound on γ′:

Proposition 9.2 (Critical exponent γ′). Assume that the random graph sequence (GN )N≥1
is locally tree-like with asymptotic degree distribution P that obeys E[K3] <∞ or a power
law with exponent τ ∈ (3, 5]. Then,

γ′ ≥ 1. (9.4)
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9.2 Discussion

Mean-field values. The above result shows that the critical exponent γ has the same
value as in the Curie-Weiss model [16] for all locally tree-like random graphs with finite
second moment of the degree distribution. Again, these values are also the same for the
Ising model on Zd for d > 4 [2] with possible logarithmic corrections at d = 4 [4]. The
mean-field value for γ′ is also equal to 1 [16], but we are not able to prove this for our
model.

The critical exponents γ′ and other critical exponents. Proposition 9.2 only gives a
lower bound on the critical exponent γ′. It is predicted that γ′ = 1 for all τ > 3, while
there are also predictions for other critical exponents. For instance the critical exponent
α′ for the specific heat in the low-temperature phase satisfies α′ = 0 when E[K3] <∞
and α′ = (τ− 5)/(τ− 3) in the power-law case with τ ∈ (3, 5) (see [40, 74]). We prove
the lower bound γ′ ≥ 1 in Section 9.4 below, and we also present a heuristic argument
that γ′ ≤ 1 holds. The critical exponent α′ for the specific heat is beyond our current
methods, partly since we are not able to relate the specific heat on a random graph to
that on the random Bethe tree.

9.3 The critical exponent γ

The proof is divided into three steps. We first reduce the susceptibility on the random
graph to the one on the random Bethe tree. Secondly, we rewrite the susceptibility on
the tree using transfer matrix techniques. Finally, we use this rewrite (which applies to
all β and B > 0) to prove that γ = 1.

Reduction to the random tree. Let φ denote a vertex selected uniformly at random
from [N] and let Eφ denote its expectation. Then we can write the susceptibility as

χN ≡
1

N

N
∑

i, j=1

�

〈σiσ j〉µN
− 〈σi〉µN

〈σ j〉µN

�

= Eφ
� N
∑

j=1

�

〈σφσ j〉µN
− 〈σφ〉µN

〈σ j〉µN

�

�

.

(9.5)
Note that

〈σiσ j〉µN
− 〈σi〉µN

〈σ j〉µN
=
∂ 〈σi〉µN

∂ B j
, (9.6)

which is, by the GHS inequality [58], decreasing in external fields at all other vertices k ∈
[N]. Denote by 〈·〉t,+/ f the Ising model with +/free boundary conditions, respectively, at
all vertices at graph distance t from φ. Then, for all t ≥ 1,

χN ≥ Eφ
� N
∑

j=1

�

〈σφσ j〉t,+µN
− 〈σφ〉t,+µN

〈σ j〉t,+µN

�

�

. (9.7)

By introducing boundary conditions, only vertices in the ball Bφ(t) contribute to the sum.
Hence, by taking the limit N →∞ and using that the graph is locally tree-like,

χ ≥ E
�

∑

j∈Tt

�

〈σφσ j〉t,+ − 〈σφ〉t,+〈σ j〉t,+
�

�

, (9.8)
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where the expectation now is over the random tree Tt ∼ T (D, K , t) with root φ.
For an upper bound on χN we use a trick similar to one used in the proof of [34,

Corollary 4.5]: Let B′j = B if j ∈ Bt(φ) and B′j = B + H if j /∈ Bt(φ) for some H > −B.
Denote by 〈·〉H the associated Ising expectation. Then, because of (9.6),

Eφ
�

∑

j /∈Bt (φ)

�

〈σφσ j〉 − 〈σφ〉〈σ j〉
�

�

= Eφ
�

∂

∂ H
〈σφ〉H

�

�

�

�

H=0

�

. (9.9)

By the GHS inequality, 〈σφ〉H is a concave function of H and hence,

Eφ
�

∂

∂ H
〈σφ〉H

�

�

�

�

H=0

�

≤ Eφ
�

2

B

�

〈σφ〉H=0 − 〈σφ〉H=−B/2

�

�

. (9.10)

Using the GKS inequality this can be bounded from above by

Eφ
�

2

B

�

〈σφ〉
t,+
H=0 − 〈σφ〉

t, f
H=−B/2

�

�

= Eφ
�

2

B

�

〈σφ〉t,+ − 〈σφ〉t, f
�

�

, (9.11)

where the equality holds because the terms depend only on the system in the ball Bt(φ)
and hence not on H. By letting N →∞, by the locally tree-likeness, this is equal to

2

B
E
��

〈σφ〉t,+ − 〈σφ〉t, f
��

, (9.12)

where the expectation and the Ising model now is over the random tree Tt ∼ T (D, K , t)
with root φ. From Lemma 4.3 we know that this expectation can be bounded from above
by A/t for some constant A= A(β , B)<∞. Hence, if t →∞,

lim
t→∞

E
�

∑

j∈Tt

�

〈σφσ j〉t,+ − 〈σφ〉t,+〈σ j〉t,+
�

�

≤ χ (9.13)

≤ lim
t→∞

E
�

∑

j∈Tt

�

〈σφσ j〉t, f − 〈σφ〉t, f 〈σ j〉t, f
�

�

.

Rewrite of the susceptibility on trees. It remains to study the susceptibility on trees.
For this, condition on the tree T∞. Then, for some vertex j at height ` ≤ t in the tree,
denote the vertices on the unique path from φ to j by φ = v0, v1, . . . , v` = j and let, for
0 ≤ i ≤ `, S≤i = (σv0

, . . . ,σvi
). We first compute the expected value of a spin σvi

on
this path, conditioned on the spin values S≤i−1. Note that under this conditioning the
expected spin value only depends on the spin value σvi−1

and the effective field hvi
=

ht,+/ f
vi

obtained by pruning the tree at vertex vi , i.e., by removing all edges at vertex vi

going away from the root and replacing the external magnetic field at vertex vi by hvi

which can be exactly computed using Lemma 4.2. Hence,

〈σvi
|S≤i−1〉t,+/ f =

eβσvi−1
+hvi − e−βσvi−1

−hvi

eβσvi−1
+hvi + e−βσvi−1

−hvi
. (9.14)
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We can write the indicators 1{σvi−1
=±1} =

1
2
(1±σvi−1

), so that the above equals

1

2
(1+σvi−1

)
eβ+hvi − e−β−hvi

eβ+hvi + e−β−hvi
+

1

2
(1−σvi−1

)
e−β+hvi − eβ−hvi

e−β+hvi + eβ−hvi

= σvi−1

1

2

�

eβ+hvi − e−β−hvi

eβ+hvi + e−β−hvi
−

e−β+hvi − eβ−hvi

e−β+hvi + eβ−hvi

�

(9.15)

+
1

2

�

eβ+hvi − e−β−hvi

eβ+hvi + e−β−hvi
+

e−β+hvi − eβ−hvi

e−β+hvi + eβ−hvi

�

.

By pairwise combining the terms over a common denominator the above equals

σvi−1

1

2

(eβ+hvi − e−β−hvi )(e−β+hvi + eβ−hvi )− (e−β+hvi − eβ−hvi )(eβ+hvi + e−β−hvi )

(eβ+hvi + e−β−hvi )(e−β+hvi + eβ−hvi )

+
1

2

(eβ+hvi − e−β−hvi )(e−β+hvi + eβ−hvi ) + (e−β+hvi − eβ−hvi )(eβ+hvi + e−β−hvi )

(eβ+hvi + e−β−hvi )(e−β+hvi + eβ−hvi )
.

(9.16)

By expanding all products, this equals, after cancellations,

σvi−1

e2β + e−2β

e2β + e−2β + e2hvi + e−2hvi
+

e2hvi + e−2hvi

e2β + e−2β + e2hvi + e−2hvi
(9.17)

= σvi−1

sinh(2β)
cosh(2β) + cosh(2hvi

)
+

sinh(2hvi
)

cosh(2β) + cosh(2hvi
)
.

Using this, we have that

〈σv`〉
t,+/ f = 〈〈σv` |S≤`−1〉t,+/ f 〉t,+/ f

= 〈σv`−1
〉t,+/ f sinh(2β)

cosh(2β) + cosh(2hv`)
+

sinh(2hv`)

cosh(2β) + cosh(2hv`)
. (9.18)

Applying this recursively, we get

〈σv`〉
t,+/ f = 〈σv0

〉t,+/ f
∏̀

i=1

sinh(2β)
cosh(2β) + cosh(2hvi

)
(9.19)

+
∑̀

i=1

� sinh(2hvi
)

cosh(2β) + cosh(2hvi
)

∏̀

k=i+1

sinh(2β)
cosh(2β) + cosh(2hvk

)

�

.
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Similarly,

〈σv0
σv`〉

t,+/ f =
�

σv0

�

σv0

∏̀

i=1

sinh(2β)
cosh(2β) + cosh(2hvi

)

+
∑̀

i=1

� sinh(2hvi
)

cosh(2β) + cosh(2hvi
)

∏̀

k=i+1

sinh(2β)
cosh(2β) + cosh(2hvk

)

���t,+/ f

=
∏̀

i=1

sinh(2β)
cosh(2β) + cosh(2hvi

)
(9.20)

+ 〈σv0
〉t,+/ f

∑̀

i=1

� sinh(2hvi
)

cosh(2β) + cosh(2hvi
)

∏̀

k=i+1

sinh(2β)
cosh(2β) + cosh(2hvk

)

�

.

Combining the above yields

〈σv0
σv`〉

t,+/ f − 〈σv0
〉t,+/ f 〈σv`〉

t,+/ f =
�

1−
�

〈σv0
〉t,+/ f

�2
�
∏̀

i=1

sinh(2β)
cosh(2β) + cosh(2hvi

)
.

(9.21)
By taking the limit t →∞, we obtain

χ = E
�

∑

j∈T∞

�

1− 〈σv0
〉2
�

| j|
∏

i=1

sinh(2β)
cosh(2β) + cosh(2hvi

)

�

. (9.22)

Finally, we can rewrite

sinh(2β)
cosh(2β) + cosh(2hvi

)
=

2 sinh(β) cosh(β)
2cosh(β)2 − 1+ cosh(2hvi

)
=

β̂

1+
cosh(2hvi

)−1

2 cosh(β)2

, (9.23)

so that

χ(β , B) = E
�

�

1− 〈σv0
〉2
�
∑

j∈T∞

β̂ | j|
| j|
∏

i=1

�

1+
cosh(2hvi

)− 1

2cosh(β)2
�−1
�

. (9.24)

The rewrite in (9.24) is valid for all β and B > 0, and provides the starting point for all
our results on the susceptibility.

Identification of the susceptibility for β < βc . We take the limit B ↘ 0, for β < βc ,
and apply dominated convergence. First of all, all fields hi converge to zero by the

definition of βc , so we have pointwise convergence. Secondly, 1 +
cosh(2hvi

)−1

2cosh(β)2
≥ 1, so

that the random variable in the expectation is bounded from above by
∑

j∈T∞
β̂ | j|, which

has finite expectation as we show below. Thus, by dominated convergence, the above
converges to

lim
B↘0

χ(β , B) = E
�

∑

j∈T∞

β̂ | j|
�

. (9.25)
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Denote by Z` the number of vertices at distance ` from the root. Then,

E
�

∑

j∈T∞

β̂ | j|
�

= E
� ∞
∑

`=0

Z`β̂
`

�

=
∞
∑

`=0

E[Z`]β̂`, (9.26)

because Z` ≥ 0, a.s. Note that Z`/(E[D]ν`−1) is a martingale, because the offspring of
the root has expectation E[D] and all other vertices have expected offspring ν . Hence,

lim
B↘0

χ(β , B) =
∞
∑

`=0

E[Z`]β̂` = 1+
∞
∑

`=1

E[D]ν`−1β̂` = 1+
E[D]β̂
1− β̂ν

. (9.27)

This proves (9.1). We continue to prove (9.2), which follows by using (8.86) and (8.99):

E[D]β̂
1− β̂2

(βc − β)−1 + 1≤
E[D]
ν

1

1− β̂ν
≤

E[D]β̂
1− β̂2

c

(βc − β)−1 + 1. (9.28)

9.4 Partial results for the critical exponent γ′

Proof of Proposition 9.2. We start by rewriting the susceptibility in a form that is conve-
nient in the low-temperature phase.

A rewrite of the susceptibility in terms of i.i.d. random variables. For β > βc we
start from (9.24). We further rewrite

χ(β , B) =
∞
∑

`=0

β̂`E
�

(1− 〈σv0
〉2)
∑

v`∈T∞

exp
n

−
∑̀

i=1

log
�

1+
cosh(2hvi

)− 1

2cosh(β)2
�o

�

. (9.29)

Here, and in the sequel, we use the convention that empty products, arising when `= 0,
equal 1, while empty sums equal 0. Thus, the contribution due to `= 0 in the above sum
equals 1. We write v0 = φ and vi = a0 · · · ai−1 ∈ Ni for i ≥ 1, so that vi is the ai−1st child
of vi−1. Then,

χ(β , B) =
∞
∑

`=0

β̂`
∑

a0,...,a`−1

E
�

(1− 〈σv0
〉2)1{v`∈T∞} exp

n

−
∑̀

i=1

log
�

1+
cosh(2hvi

)− 1

2cosh(β)2
�o

�

.

(9.30)
Let Kvi

be the number of children of vi , and condition on Kvi
= ki for every i ∈ [0,`− 1],

where we abuse notation to write [0, m] = {0, . . . , m}. As a result, we obtain that

χ(β , B) =
∞
∑

`=0

β̂`
∑

a0,...,a`−1

∑

k0,...,k`−1

P(v` ∈ T∞, Kvi
= ki ∀i ∈ [0,`− 1])

×E
�

(1− 〈σv0
〉2)exp

n

−
∑̀

i=1

log
�

1+
cosh(2hvi

)− 1

2cosh(β)2
�o

(9.31)

| v` ∈ T∞, Kvi
= ki ∀i ∈ [0,`− 1]

�

.
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Note that

P(Kvi
= ki ∀i ∈ [0,`− 1], v` ∈ T∞) = P(D = k0)1{a0≤k0}

`−1
∏

i=1

P(K = ki)1{ai≤ki}. (9.32)

Let Ti, j be the tree that descibes all descendants of the jth child of vi , with the aith child
removed, and T` the offspring of v`. When v` ∈ T∞, all information of the tree T∞ can
be encoded in the collection of trees (Ti, j) j∈[0,Kvi

−1],i∈[0,`−1] and T`, together with the

sequence (ai)
`−1
i=0 . Denote ~T =

�

(Ti, j) j∈[0,Kvi
−1],i∈[0,`−1], T`

�

. Then, for any collection of

trees ~t =
�

(t i, j) j∈[0,ki−1],i∈[0,`−1], t`
�

,

P(~T = ~t | Kvi
= ki ∀i ∈ [0,`− 1], v` ∈ T∞) = P(T = t`)

∏

(i, j)∈[0,ki−1]×[0,`−1]

P(T = t i, j),

(9.33)
where the law of T is that of a Galton-Watson tree with offspring distribution K . We
conclude that

χ(β , B) =
∞
∑

`=0

β̂`
∑

a0,...,a`−1

∑

k0,...,k`−1

P(D = k0)1{a0≤k0}

`−1
∏

i=1

P(K = ki)1{ai≤ki}

×E
�

(1− 〈σv0
〉2)exp

n

−
∑̀

i=1

log
�

1+
cosh(2h?i (~k))− 1

2cosh(β)2
�o

�

, (9.34)

where (h?i (~k))
`
i=0 satisfy the recursion relations h?` = h`,1

h?i (~k) = B+ ξ(h?i+1(~k)) +
ki−1
∑

j=1

ξ(hi, j), (9.35)

and where (hi, j)i∈[0,`], j≥1 are i.i.d. copies of the random variable h(β , B). We note that the
law of (h?i (~k))

`
i=0 does not depend on (ai)i∈[0,`−1], so that the summation over (ai)i∈[0,`−1]

yields

χ(β , B) =
∞
∑

`=0

β̂`
∑

k0,...,k`−1

k0P(D = k0)
`−1
∏

i=1

kiP(K = ki)

×E
�

(1− 〈σv0
〉2)exp

n

−
∑̀

i=1

log
�

1+
cosh(2h?i (~k))− 1

2cosh(β)2
�o

�

. (9.36)

For a random variable X on the non-negative integers with E[X ] > 0, we let X ? be the
size-biased distribution of X given by

P(X ? = k) =
k

E[X ]
P(X = k). (9.37)

Then

χ(β , B) =
E[D]
ν

∞
∑

`=0

(β̂ν)`
∑

k0,...,k`−1

P(D? = k0)
`−1
∏

i=1

P(K? = ki)

×E
�

(1− 〈σv0
〉2)exp

n

−
∑̀

i=1

log
�

1+
cosh(2h?i (~k))− 1

2cosh(β)2
�o

�

. (9.38)
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Define (h?i )
`
i=0 =

�

h?i (D
?, K?1 , . . . , K?`−1, K`)

�`

i=0, where the random variables
(D?, K?1 , . . . , K?`−1, K`) are independent. Then we finally arrive at

χ(β , B) =
E[D]
ν

∞
∑

`=0

(β̂ν)`E
�

(1− 〈σv0
〉2)exp

n

−
∑̀

i=1

log
�

1+
cosh(2h?i )− 1

2cosh(β)2
�o

�

.

(9.39)

Reduction to second moments. We now proceed towards the lower bound on γ′. Note
that, a.s.,

〈σv0
〉= tanh(h?v0

), (9.40)

where

hv?0
= B+ ξ(h?v1

) +
D?−1
∑

j=1

ξ(h0, j)≤ B+ β +
D?−1
∑

j=1

ξ(h0, j). (9.41)

Therefore,

〈σv0
〉 ≤ tanh

�

B+ β +
D?−1
∑

j=1

ξ(h0, j)
�

. (9.42)

The right hand side is independent of (h?i )
`
i=1, so that the expectation factorizes. Further,

E
�

tanh
�

B+ β +
D?−1
∑

j=1

ξ(h0, j)
��

→ tanh(β) = β̂ < 1, (9.43)

as B↘ 0,β ↘ βc .
Further, we restrict the sum over all ` to ` ≤ m, where we take m = (β − βc)−1. This

leads to

χ(β , B)≥
(1− β̂2)E[D]

ν

m
∑

`=0

(β̂ν)`E
�

exp
n

−
∑̀

i=1

log
�

1+
cosh(2h?i )− 1

2cosh(β)2
�o

�

. (9.44)

We condition on all coordinates of (D?, K?1 , . . . , K?`−1, K`) being at most b = (β−βc)−1/(τ−3),
which has probability

P(D? ≤ b, K?1 ≤ b, . . . , K?`−1 ≤ b, K` ≤ b)≥ (1− o(1))P(K? ≤ b)m (9.45)

≥ (1− o(1))
�

1− CK? b
−(τ−3)�m,

which is uniformly bounded from below by a constant for the choices m = (β − βc)−1

and b = (β − βc)−1/(τ−3). Also, we use that β̂ν ≥ 1, since β > βc . This leads us to

χ(β , B)≥ cχ
m
∑

`=0

Eb

�

exp
n

−
∑̀

i=1

log
�

1+
cosh(2h?i )− 1

2cosh(β)2
�o

�

, (9.46)

where Eb denotes the conditional expectation given that D? ≤ b, K?1 ≤ b, . . . , K?`−1 ≤
b, K` ≤ b. Using that E[eX ]≥ eE[X ], which follows from Jensen’s inequality, this leads us
to

χ(β , B)≥ cχ
m
∑

`=0

exp
n

−
∑̀

i=1

Eb

�

log
�

1+
cosh(2h?i )− 1

2cosh(β)2
�

�

o

. (9.47)
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Define, for a > 0 and x ≥ 0, the function q(x) = log
�

1+a(cosh(x)−1)
�

. Differentiating
leads to

q′(x) =
a sinh(x)

1+ a(cosh(x)− 1)
, (9.48)

so that q′(x)≤ Cq x/2 for some constant Cq and all x ≥ 0. As a result, q(x)≤ Cq x2/4, so
that

χ(β , B)≥ cχ
m
∑

`=0

exp
n

− Cq

∑̀

i=1

Eb

�

(h?i )
2
�

o

. (9.49)

Second-moment analysis of h?i . As a result, it suffices to investigate second moments
of h?i , which we proceed with now. We note that

h?i = ξ(h
?
i+1) + B+

K?i −1
∑

j=1

ξ(hi, j). (9.50)

Taking expectations and using that ξ(h)≤ β̂h leads to

Eb

�

h?i
�

≤ β̂Eb

�

h?i+1

�

+ B+E[K? − 1 | K? ≤ b]E[ξ(h)]. (9.51)

Iterating this inequality until `− i and using that Eb

�

h?`
�

≤ B+νE[ξ(h)] (since Eb[K]≤
E[K]) leads to

Eb

�

h?i
�

≤ β̂`−i(B+ νE[ξ(h)]) +
`−i−1
∑

s=0

β̂ s�B+E[K? − 1 | K? ≤ b]E[ξ(h)]
�

≤ β̂`−i(B+ νE[ξ(h)]) +
B+E[K? − 1 | K? ≤ b]E[ξ(h)]

1− β̂
. (9.52)

Similarly,

Eb

�

(h?i )
2
�

≤ β̂2Eb

�

(h?i+1)
2
�

+ 2β̂Eb

�

h?i+1

�

�

B+E[K? − 1 | K? ≤ b]E[ξ(h)]
�

+ B2 + 2BE[K? − 1 | K? ≤ b]E[ξ(h)]
+E[(K? − 1)(K? − 2) | K? ≤ b]E[ξ(h)]2

+E[K? − 1 | K? ≤ b]E[ξ(h)2]. (9.53)

Taking the limit B↘ 0 we thus obtain

Eb

�

(h?i )
2
�

≤ β̂2Eb

�

(h?i+1)
2
�

+ 2β̂Eb

�

h?i+1

�

E[K? − 1 | K? ≤ b]E[ξ(h)] (9.54)

+E[(K? − 1)(K? − 2) | K? ≤ b]E[ξ(h)]2 +E[K? − 1 | K? ≤ b]E[ξ(h)2].

We start analysing the case where E[K3]<∞. By Theorem 8.1, for E[K3]<∞,

E[ξ(h)]≤ C0(β − βc)
1/2, (9.55)

for some constant C0. Substituting (9.52), and iterating in a similar fashion as in the
proof of (9.52), we obtain that, for E[K3]<∞,

Eb

�

(h?i )
2
�

≤ C(β − βc). (9.56)
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We next extend this analysis to τ ∈ (3,5). Note that, for every a > 0,

E[(K?)a | K? ≤ b] =
E[Ka+11{K≤b}]

E[K1{K≤b}]
, (9.57)

so that, for τ ∈ (3, 5),

E[(K?)2 | K? ≤ b]≤
C3,τ

E[K1{K≤b}]
b5−τ, (9.58)

Further, for τ ∈ (3,5),
E[ξ(h)]≤ C0(β − βc)

1/(3−τ), (9.59)

and thus

E[(K?)2 | K? ≤ b]E[ξ(h)]2C ≤ b5−τE[ξ(h)]2 ≤ C(β−βc)
−(5−τ)/(3−τ)+2/(3−τ) = C(β−βc).

(9.60)
It can readily be seen that all other contributions to Eb

�

(h?i )
2
�

are of the same or smaller
order. For example, when E[K2]<∞ and using that 1/(τ− 3)≥ 1/2 for all τ ∈ (3,5),

E[K? − 1 | K? ≤ b]E[ξ(h)2]≤ CE[ξ(h)]2 = O(β − βc), (9.61)

while, when τ ∈ (3,4),

E[K? − 1 | K? ≤ b]E[ξ(h)2]≤ C b4−τE[ξ(h)]τ−2

= C(β − βc)
−(4−τ)/(3−τ)+(τ−2)/(3−τ) = C(β − βc)

2. (9.62)

We conclude that
Eb

�

(h?i )
2
�

≤ C(β − βc). (9.63)

Therefore,

χ(β , B)≥ cχ
m
∑

`=0

exp
n

− C`(β − βc)
o

= O((β − βc)
−1), (9.64)

as required.
The proof for τ= 5 is similar when noting that the logarithmic corrections present in

E[ξ(h)]2 and in E[(K?)2 | K? ≤ b] precisely cancel.

We close this section by performing a heuristic argument to determine the upper
bound on γ′. Unfortunately, as we discuss in more detail following the heuristics, we are
currently not able to turn this analysis into a rigorous proof.

The upper bound on γ′: heuristics for E[K3]<∞. We can bound from above

χ(β , B)≤
E[D]
ν

∞
∑

`=0

(β̂ν)`E
�

exp
n

−
∑̀

i=1

log
�

1+
cosh(2h?i )− 1

2 cosh(β)2
�o

�

. (9.65)

Now, the problem is that β̂ν > 1 when β > βc , so that we need to extract extra decay
from the exponential term, which is technically demanding, and requires us to know
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various constants rather precisely. Let us show this heuristically. It suffices to study large
values of `, since small values can be bounded in a simple way.

We blindly put the expectation in the exponential, and Taylor expand to obtain that

χ(β , B)≈
E[D]
ν

∞
∑

`=0

(β̂ν)` exp
n

−
∑̀

i=1

E
�

(h?i )
2
�

cosh(β)2
o

. (9.66)

We compute that

cosh(β)2 =
1

1− β̂2
. (9.67)

Since

h?i ≈ β̂h?i+1 +
K?i −1
∑

j=1

ξ(hi, j), (9.68)

we have

E
�

h?i
�

≈
E[K? − 1]

1− β̂
E[ξ(h)], (9.69)

and

E
�

(h?i )
2
�

≈
2β̂E[K? − 1]2 +E[(K? − 1)(K? − 2)](1− β̂)

(1− β̂2)(1− β̂)
E[ξ(h)]2

+
E[K? − 1]

1− β̂2
E[ξ(h)2]. (9.70)

Ignoring all error terms in the proof of Lemma 8.3 shows that

E[ξ(h)2]≈
ν2β̂

2

1− β̂
E[ξ(h)]2 = C2E[ξ(h)]2, (9.71)

so in total we arrive at (also using that β̂ ≈ 1/ν)

E
�

(h?i )
2
�

≈
ν3(1− β̂)/ν + 3ν2

2/ν
3

(1− β̂2)(1− β̂)
E[ξ(h)]2. (9.72)

As a result,
E
�

(h?i )
2
�

cosh(β)2
≈
ν3(1− β̂)/ν + 3ν2

2/ν
3

1− β̂
E[ξ(h)]2. (9.73)

Ignoring error terms in the computation in Lemma 8.5 shows that

E[ξ(h)3]≈ C3E[ξ(h)]3, (9.74)

where

C3 =
β̂3

1− β̂3ν

�

ν3 + 3ν2C2
�

≈
β̂3

1− β̂2

�

ν3 + 3ν2C2
�

=
β̂3

(1− β̂2)(1− β̂)

�

ν3(1− β̂) + 3(ν2/ν)
2
�

, (9.75)
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since β̂ ≈ 1/ν . Further, again ignoring error terms in (8.34) and Taylor expanding to
third order shows that

E[ξ(h)]≈ β̂νE[ξ(h)]− C1E[ξ(h)]3, (9.76)

where

C1 =−
ξ′′′(0)

6

�

νC3 + 3ν2C2 + ν3
�

, (9.77)

and ξ′′′(0) =−2β̂(1− β̂2). Substituting the definitions for C2 and C3 yields

C1 =
β̂(1− β̂2)

3

�

νC3 + 3ν2C2 + ν3
�

=
β̂

3(1− β̂)
�

νβ̂3ν3(1− β̂) + 3νβ̂3(ν2/ν)
2 + 3ν2

2 β̂
2(1− β̂2) + ν3(1− β̂)(1− β̂2)

�

=
β̂

3(1− β̂)
�

ν3(1− β̂) + 3ν2
2 β̂

2�. (9.78)

Thus, we arrive at

E[ξ(h)]2 ≈
β̂ν − 1

C1
, (9.79)

so that substitution into (9.73) leads to

E
�

(h?i )
2
�

cosh(β)2
≈ (β̂ν − 1)

3
�

ν3(1− β̂)/ν + 3ν2
2/ν

3�

β̂
�

ν3(1− β̂) + 3ν2
2 β̂

2
� = 3(β̂ν − 1). (9.80)

We conclude that

(β̂ν)exp
�

−
E
�

(h?i )
2
�

cosh(β)2
	

≤
�

1+ (β̂ν − 1)
�

e−3(β̂ν−1) ≤ e−2(β̂ν−1). (9.81)

This suggests that

χ(β , B)≤
E[D]
ν

∞
∑

`=0

e−2`(β̂ν−1) = O((β̂ν − 1)−1), (9.82)

as required. Also, using (9.66), this suggests that

lim
β↘βc

(β̂ν − 1)χ(β , 0+) = E[D]/(2ν), (9.83)

where the constant is precisely half the one for the subcritical susceptibility (see (9.1)).
It can be seen by an explicit computation that the same factor 1/2 is also present in
the same form for the Curie-Weiss model [16]. Indeed for the Boltzmann-Gibbs measure
with Hamiltonian HN (σ) =−

1
2N

∑

i, j σiσ j one has βc = 1 and a susceptibility χ(β , 0+) =
1/(1−β) for β < βc , χ(β , 0+) = (1−m2)/(1−β(1−m2)) with m the non-zero solution
of m = tanh(βm) for β > βc . Expanding this gives m2 = 3(β − 1)(1+ o(1)) for β ↘ 1
and hence χ(β , 0+) = (1+ o(1))/(1− β(1− 3(β − 1))) = (1+ o(1))/(2(β − 1)).
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It is a non-trivial task to turn the heuristic of this section into a proof because of
several reasons: (a) We need to be able to justify the step where we put expectations in
the exponential. While we are dealing with random variables with small means, they are
not independent, so this is demanding; (b) We need to know the constants very precisely,
as we are using the fact that a positive and negative term cancel in (9.81). The analysis
performed in the previous sections does not give optimal control over these constants, so
this step also requires substantial work.

The above heuristic does not apply to τ ∈ (3, 5]. However, the constant in (9.80)
is always equal to 3, irrespective of the degree distribution. This suggests that also for
τ ∈ (3, 5], we should have γ′ ≤ 1.
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10
EXISTENCE OF THERMODYNAMIC LIMIT OF

THE PRESSURE

In this chapter we use superadditivity to prove that the thermodynamic limit of the
quenched pressure exists for the antiferromagnetic Potts model.

Recall that the antiferromagnetic Potts model without external field is defined by the
Boltzmann-Gibbs measure as in (3.22), which can alternatively be written as

µ(σ) =
1

ZN (β)
e−βH(σ), (10.1)

where

H(σ) =
N
∑

i, j=1

Ji, jδ(σi ,σ j), (10.2)

with Ji, j ≥ 0, and

ZN (β) =
∑

σ∈[q]N
e−βH(σ). (10.3)

We study this model on a Poissonian Erdős-Rényi random graph, and hence let (Ji, j)i, j∈[N]
be i.i.d. Poisson random variables with

E[Ji, j] =
c

2N
, (10.4)

so that all vertices in the underlying graph will have expected degree c. Note that due to
this construction we study the Potts model on a complete graph with disorder, because
the interaction strength between two vertices is random. As mentioned in Chapter 2,
self-loops and multiple edges might occur, but there will only be a small number of them
and hence the effect of these self-loops and multiple edges will be negligible.

10.1 Results

We now state the main result in this chapter, namely the existence of the pressure:
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Theorem 10.1. The thermodynamic limit of the quenched pressure per vertex exists and is
equal to

p(β) = sup
N

pN (β)<∞. (10.5)

We prove this theorem by using an interpolation scheme to show that the sequence
pN (β) is superadditive in Section 10.3 and then use this to prove the existence in Sec-
tion 10.4.

10.2 Discussion

Relation to the ferromagnet. The techniques as used in Part I of this thesis do not
work for the antiferromagnetic Potts model. One reason is that in this case correlation
inequalities like the GKS inequality do not hold. Also, the locally treelike behavior of the
Erdős-Rényi random graph does not simplify things, since long loops present in the graph
cause frustration and thus cannot be ignored.

Interpolation. The interpolation scheme to prove existence of the thermodynamic limit
of the pressure was introduced in [60]. There it was used to prove that the pressure of
the Sherrington-Kirkpatrick model is superadditive. After this, it has been employed for
many other models, for example for the Viana-Bray model, a spin glass on the Erdős-
Rényi random graph with interactions Ji, j that have a symmetric distribution [61], and
the p-spin model where the interactions depend on p Ising spins [54].

10.3 Superadditivity

As usual in disordered systems, it is convenient to study multiple copies, often called
replicas, of the system. For this, consider for n ∈ N the product Boltzmann-Gibbs measure
and define the expectation with respect to this measure as

¬

f (σ(1), . . . ,σ(n))
¶

=
1

Zn(β)

∑

σ(1),...,σ(n)∈[q]N
f (σ(1), . . . ,σ(n))e−β(HN (σ(1))+...+HN (σ(n))).

(10.6)
An important observable that appears later is the sequence qN (r1, r2, . . . , rn), for n ∈ N,
with (r1, r2, . . . , rn) ∈ [q]n, which represents a generalized multi-overlap between the n
spin configurations σ(1), . . . ,σ(n), and is defined as

qN (r1, . . . , rn) =
1

N

N
∑

i=1

δ(σ(1)i , r1) · · ·δ(σ
(n)
i , rn). (10.7)

Using these replicas we can prove that the pressure is superadditive.

Proposition 10.2 (Superadditivity). The quenched pressure per vertex is a superadditive
sequence, i.e., for all N1, N2, N ∈ N with N1 + N2 = N,

N pN (β)≥ N1pN1
(β) + N2pN2

(β). (10.8)
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Proof. The proof is obtained by interpolation. For a partition of a system of size N into
two subsystems of sizes N1 and N2 and for a t ∈ [0,1] we consider the following inde-
pendent Poisson random variables:

J
′

i, j ∼ Poi
� c t

2N

�

, J
′′

i, j ∼ Poi
� c(1− t)

2N1

�

, J
′′′

i, j ∼ Poi
� c(1− t)

2N2

�

. (10.9)

We define the interpolating Hamiltonian

HN (σ, t) =
N
∑

i, j=1

J
′

i, jδ(σi ,σ j) +
N1
∑

i, j=1

J
′′

i, jδ(σi ,σ j) +
N
∑

i, j=N1+1

J
′′′

i, jδ(σi ,σ j), (10.10)

which induces an interpolating random partition function

ZN (β , t) =
∑

σ∈[q]N
e−βHN (σ,t), (10.11)

the expectation with respect to an interpolating random Boltzmann-Gibbs measure




f (σ)
�

t =
1

ZN (β , t)

∑

σ∈[q]N
f (σ)e−βHN (σ,t), (10.12)

and an interpolating quenched pressure

pN (β , t) =
1

N
E
�

log ZN (β , t)
�

. (10.13)

Since pN (β , 1) = pN (β) and pN (β , 0) = N1

N
pN1
(β)+ N2

N
pN2
(β) the proposition follows from

the fundamental theorem of calculus if one can show that the interpolating pressure is
monotonically non-decreasing in t.

Note that for a Poisson random variable X with parameter λ,

d

dλ
P[X = x] = e−λ

λx−1

(x − 1)!
− e−λ

λx

x!
, (10.14)

and hence, for a vector X = (X1, . . . , Xm) of m independent Poisson random variables X i
with parameter λi(t) and a function f : Nm→ R,

d

dt
E[ f (X )] = E

� m
∑

i=1

dλi(t)
dt

�

f (X1, . . . , X i + 1, . . . , Xm)− f (X1, . . . , X i , . . . , Xm)
�

�

.

(10.15)
We apply this to the function

f (t) =
1

N
log ZN (β , t), (10.16)

which depends on the Poisson random variables (J
′

i, j)
N
i, j=1,(J

′′

i, j)
N1
i, j=1 and (J

′′′

i, j)
N
i, j=N1+1.

Abusing notation, we write f (t, X
′

i, j) for f (t) with J
′

i, j = X
′

i, j . Then,

f (t, J
′

i, j + 1)− f (t, J
′

i, j) =
1

N
log
�

∑

σ∈[q]N
e−βHN (σ,t)−βδ(σi ,σ j)

�

−
1

N
log ZN (β , t) (10.17)

=
1

N
log

∑

σ∈[q]N e−βδ(σi ,σ j)e−βHN (σ,t)

ZN (β , t)
=

1

N
log
¬

e−βδ(σi ,σ j)
¶

t
.
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Similar computations hold for J
′′

i, j and J
′′′

i, j . Using this, the derivative of the interpolating
pressure equals

dpN (β , t)
dt

=
c

2
E
�

1

N2

N
∑

i, j=1

log
¬

e−βδ(σi ,σ j)
¶

t
(10.18)

−
1

NN1

N1
∑

i, j=1

log
¬

e−βδ(σi ,σ j)
¶

t
−

1

NN2

N
∑

i, j=N1+1

log
¬

e−βδ(σi ,σ j)
¶

t

�

.

Expression (10.18) can be further simplified using the identity

e−βδ(σi ,σ j) = 1− (1− e−β)δ(σi ,σ j), (10.19)

and the Taylor expansion

log(1− x) =−
∞
∑

n=1

xn

n
, ∀|x |< 1. (10.20)

One obtains

dpN (β , t)
dt

=−
c

2
E
� ∞
∑

n=1

(1− e−β)n

n

�

1

N2

N
∑

i, j=1

¬

δ(σi ,σ j)
¶n

t

−
1

NN1

N1
∑

i, j=1

¬

δ(σi ,σ j)
¶n

t
−

1

NN2

N
∑

i, j=N1+1

¬

δ(σi ,σ j)
¶n

t

��

. (10.21)

We want to rewrite this in terms of generalized overlaps. Note that

1

N2

N
∑

i, j=1

δ(σ(1)i ,σ(1)i ) · · ·δ(σ
(n)
i ,σ(n)i ) =

q
∑

r1,...,rn=1

q2
N (r1, . . . , rn), (10.22)

and hence

dpN (β , t)
dt

=−
c

2
E
� ∞
∑

n=1

(1− e−β)n

n
(10.23)

q
∑

r1,...,rn=1

�

q2
N (r1, . . . , rn)−

N1

N
q2

N1
(r1, . . . , rn)−

N2

N
q2

N2
(r1, . . . , rn)

�

t

�

.

Note that

qN (r1, . . . , rn) =
N1

N
qN1
(r1, . . . , rn) +

N2

N
qN2
(r1, . . . , rn), (10.24)

i.e., qN (r1, . . . , rn) is a convex linear combination of qN1
(r1, . . . , rn) and qN2

(r1, . . . , rn).
Combining this with the fact that the function f : x 7→ x2 is a convex function shows
that, a.s.,

q2
N (r1, . . . , rn)−

N1

N
q2

N1
(r1, . . . , rn)−

N2

N
q2

N2
(r1, . . . , rn)≤ 0, (10.25)

and hence
dpN (β , t)

dt
≥ 0. (10.26)
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Remark 10.3. The same computation goes through also for the ferromagnetic model with
the change β 7→ −β . However 1− eβ < 0 for β > 0 and therefore the series expansion
in (10.23), which is only allowed for β < log2, has alternating signs and monotonicity
can not be derived anymore by inspection. We believe however that the interpolation is
monotone also in the ferromagnetic case, though in the opposite direction. This belief
is based on two facts. Firstly, pressure subadditivity for the ferromagnetic model on the
Erdős-Rényi random graph has been checked numerically for small system sizes [6]. This
is in agreement with a monotonic behavior of the interpolating pressure. Secondly, and
more importantly, the numerical checks [6] for the Ising case (q = 2) show that for
0≤ t ≤ 1 the series in (10.23) is dominated by the first term and therefore one would be
left with the same interpolating pressure of the Curie-Weiss model which is known to be
sub-additive. This is indeed rigorously shown at zero temperature in [96]. Although the
ferromagnetic model has been fully solved in [34], it would be interesting to extend the
monotonicity result to all temperatures.

10.4 Existence

We can now use superadditivity to prove the existence of the thermodynamic limit of the
pressure and its realization as a supremum.

Proof of Theorem 10.1. The theorem is a direct consequence of Proposition 10.2 and
Fekete’s lemma [94] of which we recapitulate the proof in the present context. Sup-
pose that M ≤ N . Then we can choose k and ` such that N = kM + `, with 0 ≤ ` < M .
Because of superadditivity we know that

kM pkM ≥ kM pM . (10.27)

Hence, using superadditivity once more,

N pN ≥ kM pM + `p` ≥ kM pM + min
0≤i<M

ipi . (10.28)

Dividing both sides by N and taking lim infN→∞ gives

lim inf
N→∞

pN ≥ lim inf
N→∞

�

N − `
N

pM +
1

N
min

0≤i<M
ipi

�

= pM . (10.29)

Since this holds for all M we can take the supremum over M on the right-hand side, so
that

lim inf
N→∞

pN ≥ sup
M∈N

pM ≥ limsup
M→∞

pM , (10.30)

where the last inequality trivially holds. Of course, it also holds that

lim sup
N→∞

pN ≥ lim inf
N→∞

pN , (10.31)

thus showing that limN→∞ pN exists and is equal to supN∈N pN . To show that this supre-
mum is finite, we observe that e−βH(σ) ≤ 1, a.s., for all σ ∈ [q]N and hence

pN =
1

N
E[log ZN ] =

1

N
E
�

log
∑

σ∈[q]N
e−βH(σ)

�

≤ log q <∞. (10.32)

In Chapter 11 we improve this upper bound on pN (β).
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11
EXTENDED VARIATIONAL PRINCIPLE

In the previous chapter we have shown that the thermodynamic limit of the pressure
exists and equals

p(β) = sup
N

pN (β)<∞. (11.1)

In this chapter we give a different characterization for p(β) by showing that

p(β) = lim
N→∞

inf
L

GN (β ,L ), (11.2)

for some explicit formula GN (β ,L ) and the infimum is over a suitable set of laws L .
This is called the extended variational principle, which was developed in [5] for the
Sherrington-Kirkpatrick (SK) model. We prove in this chapter that it also holds for the
antiferromagnet. Furthermore, we use it to derive upper bounds on the pressure by not
taking the infimum over L , but by choosing specific L .

11.1 Results

To state the results in this chapter, we need the notion of exchangeable measures.

Definition 11.1 (Exchangeable measure). Let (µα)∞α=1 be a random sequence such that
each µα is positive and summable, almost surely. Also let (τα,k)α∈N, k∈N be a random array
of elements of [q]. We write L for the measure which describes the joint distribution of

((µα)α∈N, (τα,k)α∈N, k∈N). (11.3)

We say that L is exchangeable if

((µα)α∈N, (τα,k)α∈N, k∈N)
d
= ((µα)α∈N, (τα,π(k))α∈N, k∈N), (11.4)

for every non-random permutation π of N which moves only finitely many k’s.

Then, we have the following theorem:
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Theorem 11.2 (Extended variational principle). For all β ≥ 0,

p(β) = lim
N→∞

inf
L

GN (β ,L ), (11.5)

where the infimum is over all exchangeable laws L , and where

GN (β ,L ) = G(1)N (β ,L )− G(2)N (β ,L ), (11.6)

with

G(1)N (β ,L ) =
1

N
E
�

log
∞
∑

α=1

µα

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τα,k)
��

, (11.7)

and

G(2)N (β ,L ) =
1

N
E
�

log
∞
∑

α=1

µα exp
�

− β
L
∑

k=1

δ(τα,2k−1,τα,2k)
��

, (11.8)

where E is the expectation overL as well as the random variables (I(k))∞k=1, K and L, where
we assume that (I(k))∞k=1, K , L are all independent of one another and of ((µα), (τα,k)), and
I(1), I(2), . . . are i.i.d. uniform on [N], K is Poisson with mean cN and L is Poisson with
mean cN/2.

By not taking the infimum over all laws L , but by choosing an explicit L we get an
upper bound on the pressure. We give two examples in the next theorem:

Theorem 11.3 (Upper bounds on the pressure). The following upper bounds on the pres-
sure hold for all β ≥ 0:

(a) High-temperature solution. For all N ∈ N,

pN (β)≤ pHT(β)≡
c

2
log

�

1−
1− e−β

q

�

+ log q. (11.9)

(b) Replica-symmetric solution.

p(β)≤ E log
� q
∑

σ=1

K1
∏

k=1

�

1− (1− e−β)Pk(σ)
�

�

−
c

2
E log

�

1− (1− e−β)
q
∑

σ=1

P1(σ)P2(σ)
�

,

(11.10)
where K1 is a Poisson random variable with mean c and the Pk = (Pk(σ))σ∈[q] are i.i.d.
random vectors, satisfying, a.s., Pk(σ)≥ 0 for all σ ∈ [q] and

∑q
σ=1 Pk(σ) = 1.

In the next chapter we show that the high-temperature solution is indeed correct for
high temperatures.

11.2 Discussion

The extended variational principle. The extended variational principle was first intro-
duced in [5] for the SK model. Before this, it was rigorously proved that the famous Parisi
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solution [92] was an upper bound for the pressure in [59]. The work [5], showed that
this upper bound fits in the more general framework of the extended variational prin-
ciple. The proof that Parisi’s solution is correct was given in [100] by showing that the
difference between the pressure and the Parisi solution vanishes in the thermodynamic
limit.

Replica-symmetric solution. One can optimize over the distribution of Pk and it can
be shown that the optimal choice is such that (Pk(σ))σ∈[q] satisfies the distributional
recursion

(Pk(σ))σ∈[q]
d
=
�

∏K1

k=1

�

1− (1− e−β)Pk(σ)
�

∑

σ∈[q]

∏K1

k=1

�

1− (1− e−β)Pk(σ)
�

�

σ∈[q]
, (11.11)

which is comparable to (4.1). See [27] for details. The replica-symmetric solution is
comparable to the solution of the ferromagnet in Chapter 5 and its Potts generalizations
in [36, 37].

11.3 Extended variational principle

We begin by adding our system with N vertices to a second system with M vertices, where
one should think of M � N . Or, equivalently, removing the system with N vertices from
a system with M + N vertices, thus leading to a so-called cavity.

Proposition 11.4. Suppose that N , M ∈ N are chosen and let µM be any measure on [q]M .
Then,

pN (β)≤ GN ,M (β ,µM ), (11.12)

where
GN ,M (β ,µM ) = G(1)N ,M (β ,µM )− G(2)N ,M (β ,µM ), (11.13)

with

G(1)N ,M (β ,µM ) =
1

N
E
�

log
∑

τ∈[q]M
µM (τ)

∑

σ∈[q]N
exp
�

− β
N
∑

i=1

M
∑

j=1

Ki, jδ(σi ,τ j)
��

, (11.14)

where the Ki, j ’s are i.i.d. Poisson random variables with parameter c/M, and

G(2)N ,M (β ,µM ) =
1

N
E
�

log
∑

τ∈[q]M
µM (τ)exp

�

− β
M
∑

i, j=1

Li, jδ(τi ,τ j)
��

, (11.15)

where the Li, j ’s are i.i.d. Poisson random variables with parameters cN/(2M2).

Proof. For a t ∈ [0, 1] we consider the following independent Poisson random variables:

(J̃i, j)i, j∈[N], (K̃i, j)i∈[N]; j=∈[M], (L̃i, j)i, j∈[M], (11.16)

such that

E[J̃i, j] =
(1− t)c

2N
, E[K̃i, j] =

c t

M
, E[ L̃i, j] =

(1− t)cN

2M2 , (11.17)
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for all appropriate indices i, j. We define

HN ,M (σ,τ, t) =
N
∑

i, j=1

J̃i, jδ(σi ,σ j) +
N
∑

i=1

M
∑

j=1

K̃i, jδ(σi ,τ j) +
M
∑

i, j=1

L̃i, jδ(τi ,τ j), (11.18)

and we also define

ZN ,M (β ,µM , t) =
∑

τ∈[q]M
µM (τ)

∑

σ∈[q]N
e−βHN ,M (σ,τ,t), (11.19)

and




f (σ,τ)
�

t =
1

ZN ,M (β ,µM , t)

∑

τ∈[q]M
µM (τ)

∑

σ∈[q]N
f (σ,τ)e−βHN ,M (σ,τ,t). (11.20)

Then
1

N
E[log ZN ,M (β ,µM , 0)] = pN (β) + G(2)N ,M (β ,µM ), (11.21)

since if t = 0 then HN ,M (σ,τ, 0) splits into a summand only depending on σ and one
only depending on τ. Furthermore,

1

N
E[log ZN ,M (β ,µM , 1)] = G(1)N ,M (β ,µM ). (11.22)

Moreover, as in the proof of Proposition 10.2, one can show that

d

d t

� 1

N
E[log ZN ,M (β ,µM , t)]

�

=−
c

2
E
�

1

N2

N
∑

i, j=1

log
¬

e−βδ(σi ,σ j)
¶

t

−
2

N M

N
∑

i=1

M
∑

j=1

log
¬

e−βδ(σi ,τ j)
¶

t
+

1

M2

M
∑

i, j=1

log
¬

e−βδ(τi ,τ j)
¶

t

�

=
c

2
E
� ∞
∑

n=1

(1− e−β)n

n

�

1

N2

N
∑

i, j=1

¬

δ(σi ,σ j)
¶n

t

−
2

N M

N
∑

i=1

M
∑

j=1

¬

δ(σi ,τ j)
¶n

t
+

1

M2

M
∑

i, j=1

¬

δ(τi ,τ j)
¶n

t

��

. (11.23)

This can again be rewritten in terms of generalized multi-overlaps as

c

2
E
� ∞
∑

n=1

(1− e−β)n

n

q
∑

r1,...,rn=1

¬

q2
N (r1, . . . , rn)

−2qN (r1, . . . , rn)qM (r1, . . . , rn) + q2
M (r1, . . . , rn)

¶

t

�

(11.24)

=
c

2
E
� ∞
∑

n=1

(1− e−β)n

n

q
∑

r1,...,rn=1

D

�

qN (r1, . . . , rn)− qM (r1, . . . , rn)
�2
E

t

�

,
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which is obviously nonnegative for all t. This proves that

pN (β) + G(2)N ,M (β ,µM ) =
1

N
E[log ZN ,M (β ,µM , 0)]

≤
1

N
E[log ZN ,M (β ,µM , 1)] = G(1)N ,M (β ,µM ). (11.25)

In other words,
pN (β)≤ G(1)N ,M (β ,µM )− G(2)N ,M (β ,µM ). (11.26)

In order to accommodate a limit where M approaches∞, we mention an equivalent
version of the function GN ,M (β ,µM ):

Lemma 11.5. Let I(1), I(2), . . . be i.i.d. random variables uniformly chosen from [N], and
let J(1), J(2), . . . be i.i.d. random variables uniformly chosen from [M]. Independently of
this, let K be a Poisson random variable with parameter cN and let L be a Poisson random
variable with parameter cN/2. Then,

G(1)N ,M (β ,µM ) =
1

N
E
�

log
∑

τ∈[q]M
µM (τ)

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τJ(k))
��

, (11.27)

and

G(2)N ,M (β ,µM ) =
1

N
E
�

log
∑

τ∈[q]M
µM (τ)exp

�

− β
L
∑

k=1

δ(τJ(2k−1),τJ(2k))
��

. (11.28)

Proof. This follows from a property of Poisson random variables known as Poisson thin-
ning. Previously we had i.i.d. Poisson random variables Ki, j and Li, j . Now we have just
two Poisson random variables K and L, but we have i.i.d. uniform random variables I(k),
J(k). The Poisson thinning property refers to the fact that the families

K̂i, j = #{k ≤ K : (I(k), J(k)) = (i, j)} and L̂i, j = #{k ≤ L : (J(2k− 1), J(2k)) = (i, j)},
(11.29)

are distributed identically to Ki, j and Li, j , respectively.

Corollary 11.6. Suppose that µM is a random measure on [q]M . Then,

pN (β)≤ E
�

GN ,M (β ,µM )
�

, (11.30)

where the symbol E denotes the expectation with respect to µM .

Proof. For each random realization of µM ,

pN (β)≤ GN ,M (β ,µM ), (11.31)

almost surely, according to Proposition 11.4. Hence, the corollary follows by elementary
properties of the expectation.

The following proposition may be viewed as the M →∞ limit of Proposition 11.4:
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Proposition 11.7. For all β ≥ 0 and exchangeable L ,

pN (β)≤ GN (β ,L ), (11.32)

where GN (β ,L ) is defined in Theorem 11.2.

Proof. For any fixed M , consider a random realization of the sequence (µα)α∈N and
(τα,k)α∈N, k∈N. Define the random measure µM on [q]M as

µM (τ) =
∞
∑

α=1

µα1{(τα,1,...,τα,M )=τ}, (11.33)

for each τ ∈ [q]M . This is the empirical measure, but where we merely truncate the full
sequence (τα,1,τα,2, . . .) to the first M components of the spin. Another useful way to
state the same thing is to notice that for any non-random function f : [q]M → R,

∑

τ∈[q]M
f (τ)µM (τ) =

∞
∑

α=1

µα f (τα,1, . . . ,τα,M ). (11.34)

In fact, it is not necessary that f is non-random, merely that it is independent of (µα)α∈N
and (τα,k)α∈N, k∈N. Note that µM is a random measure, but according to Corollary 11.6
this still gives an upper bound. Specifically,

pN (β)≤ E
�

GN ,M (β ,µM )
�

, (11.35)

where the expectation is over the law L for (µα)α∈N and (τα,k)α∈N, k∈N, from which µM
is derived as a measurable function.

According to Lemma 11.5, we may write

G(1)N ,M (β ,µM ) =
1

N
E
�

log
∑

τ∈[q]M
µM (τ)

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τJ(k))
��

, (11.36)

where I(1), I(2), . . . are i.i.d. uniform on [N], and J(1), J(2), . . . are i.i.d. uniform on
[M], and independently of this, K is a Poisson random variable with parameter cN . Note
that, according to (11.34), we may write

∑

τ∈[q]M
µM (τ)

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τJ(k))
�

=
∞
∑

α=1

µα

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τα,J(k))
�

. (11.37)

Conditionally on the event that J(1), . . . , J(K) are all distinct elements of [M],

1

N
log

∞
∑

α=1

µα

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τα,J(k))
�

d
=

1

N
log

∞
∑

α=1

µα

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(σI(k),τα,k)
�

(11.38)
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where we replaced the random indices J(1), . . . , J(K) by the non-random indices 1, . . . , K ,
because we assumed that (τα,1, . . . ,τα,M ) are exchangeable, meaning equal in distribu-
tion under finite permutations. Note that here we use the fact that K and J(1), J(2), . . .
are independent of (µα)α∈N and (τα,k)α∈N, k∈N. Moreover, conditional on the value of K ,
the probability that J(1), . . . , J(K) are all distinct is

M(M − 1) · · · (M − K + 1)
M K . (11.39)

If we take a single realization of K for all M ’s, then we see that this conditional probability
converges to 1, pointwise, almost surely. So we are justified in making the rearrangement
in (11.38), with high probability. Moreover, conditioning on K , we see that the function
on the left hand side of (11.38) is bounded in the interval

�

1

N
log

∞
∑

α=1

µα + log(q)−
βK

N
,

1

N
log

∞
∑

α=1

µα + log(q)
�

. (11.40)

This is summable against the distribution of K . Therefore, by the dominated convergence
theorem,

lim
M→∞

G(1)N ,M (β ,µM ) = G(1)N (β ,L ). (11.41)

A similar argument holds for the second term G(2)N (β ,L ).

We can now prove the extended variational principle:

Proof of Theorem 11.2. By taking the infimum over L in Proposition 11.7 and then tak-
ing lim infN→∞ it follows that

p(β)≤ lim inf
N→∞

inf
L

GN (β ,L ). (11.42)

It remains to prove that
p(β)≥ limsup

N→∞
inf
L

GN (β ,L ), (11.43)

because then, combined with the fact that the limit superior is always greater or equal to
the limit inferior,

p(β)≤ lim inf
N→∞

inf
L

GN (β ,L )≤ limsup
N→∞

inf
L

GN (β ,L )≤ p(β), (11.44)

and hence all must be equal. This also shows that limN→∞ infL GN (β ,L ) indeed exists.
To prove (11.43), we first use superadditivity to show that

p(β) = limsup
N→∞

lim inf
M→∞

1

N
�

(M + N)pM+N (β)−M pM (β)
�

. (11.45)

To show (11.45), we write (suppressing the dependence on β)

M + NK

NK
pNK −

M

NK
pM =

1

K

K−1
∑

k=0

�

M + Nk+ N

N
pM+Nk+N −

M + Nk

N
pM+Nk

�

≥ inf
M ′≥M

�

M ′ + N

N
pM ′+N −

M ′

N
pM ′

�

. (11.46)
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By first taking the limit K →∞ and then the limit M →∞ we get

p(β)≥ lim inf
M→∞

�

M + N

N
pM+N −

M

N
pM

�

. (11.47)

It remains to take the limit superior of N →∞ to prove the lower bound in (11.45). To
get the upper bound in (11.45), note that

M + N

N
pM+N −

M

N
pM ≥ pN , (11.48)

by superadditivity, so that

lim sup
N→∞

lim inf
M→∞

�

M + N

N
pM+N −

M

N
pM

�

≥ limsup
N→∞

lim inf
M→∞

pN = p(β), (11.49)

proving (11.45).
By definition,

(M + N)pM+N (β) = E
�

log ZM+N (β)
�

= E
�

log
∑

τ∈[q]M

∑

σ∈[q]N
e−βHM ,N (τ,σ)

�

, (11.50)

where, with random variables Ji, j , J
′

i, j ∼ Poi
�

c
2(M+N)

�

and Ki, j ∼ Poi
�

c
M+N

�

that are all
independent of each other,

HM ,N (τ,σ) =
M
∑

i, j=1

Ji, jδ(τi ,τ j) +
M
∑

j=1

N
∑

i=1

Ki, jδ(τ j ,σi) +
N
∑

i, j=1

Ji, jδ(σi ,σ j). (11.51)

We let

µ∗M (τ) = exp
�

− β
M
∑

i, j=1

J
′

i, jδ(τi ,τ j)
�

, (11.52)

to rewrite (11.50) as

(M + N)pM+N (β)

= E
�

log
∑

τ∈[q]M
µ∗M (τ)

∑

σ∈[q]N
exp
�

− β
M
∑

j=1

N
∑

i=1

Ki, jδ(τ j ,σi)− β
N
∑

i, j=1

J
′

i, jδ(σi ,σ j)
��

≥ E
�

log
∑

τ∈[q]M
µ∗M (τ)

∑

σ∈[q]N
exp
�

− β
M
∑

j=1

N
∑

i=1

Ki, jδ(τ j ,σi)− β
N
∑

i, j=1

J
′

i, j

��

(11.53)

= E
�

log
∑

τ∈[q]M
µ∗M (τ)

∑

σ∈[q]N
exp
�

− β
M
∑

j=1

N
∑

i=1

Ki, jδ(τ j ,σi)
��

− βN2E[J
′

i, j].

Using Poisson thinning we can rewrite this, with KM ∼ Poi
�

cMN
M+N

�

independent of every-
thing else, J(k) i.i.d. uniform on [M] and I(k) i.i.d. uniform on [N] both also indepen-
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dent of everything else, as

E
�

log
∑

τ∈[q]M
µ∗M (τ)

∑

σ∈[q]N
exp
�

− β
KM
∑

k=1

δ(τJ(k),σI(k))
��

− βN2 c

2(M + N)

≥ E
�

log
∑

τ∈[q]M
µ∗M (τ)

∑

σ∈[q]N
exp
�

− β
KM+K

′
M

∑

k=1

δ(τJ(k),σI(k))
��

− oM (1), (11.54)

where K
′

M ∼ Poi
�

cN2

M+N

�

independent of everything else and where oM (1) is a function

going to zero for M →∞. Note that KM+K
′

M is again Poisson distributed with expectation
cMN
M+N

+ cN2

M+N
= cN . Hence, with K ∼ Poi (cN) independent of everything else, the above

equals

E
�

log
∑

τ∈[q]M
µ∗M (τ)

∑

σ∈[q]N
exp
�

− β
K
∑

k=1

δ(τJ(k),σI(k))
��

− oM (1)

= NG(1)N ,M (β ,µ∗M )− oM (1), (11.55)

with G(1)N ,M (β ,µ∗M ) as defined in (11.14).

Similarly, with J̃i, j ∼ Poi
�

c
2M

�

i.i.d. independent of everything else,

M pM (β) = E[log ZM (β)] = E
�

log
∑

τ∈[q]M
exp
�

− β
M
∑

i, j=1

J̃i, jδτi ,τ j

��

≤ E
�

log
∑

τ∈[q]M
exp
�

− β
M
∑

i, j=1

J̃i, jδτi ,τ j − β
M
∑

i, j=1

J̃
′

i, j(δτi ,τ j − 1)
��

= E
�

log
∑

τ∈[q]M
exp
�

− β
M
∑

i, j=1

(J̃i, j + J̃
′

i, j)δτi ,τ j + β
M
∑

i, j=1

J̃
′

i, j

��

, (11.56)

where J̃
′

i, j ∼ Poi
�

cN2

2M2(M+N)

�

i.i.d. independent of everything else. Note that

J̃i, j + J̃
′

i, j
d
= Ji, j + Li, j , (11.57)

if we take Ji, j ∼ Poi
�

c
2(M+N)

�

and Li, j ∼ Poi
�

cN
2M2

�

all independent of each other and
everything else, because

c

2M
+

cN2

2M2(M + N)
=

c

2(M + N)
+

cN

2M2 . (11.58)
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Hence,

M pM (β)≤ E
�

log
∑

τ∈[q]M
exp
�

− β
M
∑

i, j=1

(Ji, j + Li, j)δ(τi ,τ j)
��

+ βM2E[J̃
′

i, j]

= E
�

log
∑

τ∈[q]M
µ∗M (τ)exp

�

− β
M
∑

i, j=1

Li, jδ(τi ,τ j)
��

+ βM2 cN2

2M2(M + N)

= NG(2)N ,M (µ
∗
M ) + oM (1), (11.59)

with G(2)N ,M (µ
∗
M ) as defined in (11.14). Combining the above gives

M + N

N
pM+N −

M

N
pM ≥ G(1)N ,M (µ

∗
M )− G(2)N ,M (µ

∗
M ) + oM (1)

= GN ,M (µ
∗
M ) + oM (1)≥ inf

L
GN (β ,L ) + oM (1). (11.60)

Now, using (11.45),

p(β) = lim sup
N→∞

lim inf
M→∞

1

N
�

(M + N)pM+N (β)−M pM (β)
�

≥ lim sup
N→∞

lim inf
M→∞

�

inf
L

GN (β ,L ) + oM (1)
�

= lim sup
N→∞

inf
L

GN (β ,L ), (11.61)

proving the theorem.

11.4 Upper bounds on the pressure

In Proposition 11.7 we show that for every exchangeable law L we get an upper bound
on the pressure. We now give two examples proving Theorem 11.3.

Proof of Theorem 11.3(a). Fix m ∈ (0,1) and let Λm be the measure on (0,∞) with
dΛm = mx−m−1dx . Suppose that (ξi)i∈N is a Poisson point process with intensity mea-
sure Λm. This has the property that, for positive i.i.d. random variables λ1,λ2, . . . also
independent of (ξi)i∈N, [32]

{λαξα}∞α=1
d
= {E[λm

α ]
1/mξα}∞α=1. (11.62)

Let

ξ̂α =
ξα

∑∞
α=1 ξα

. (11.63)

Then,

E
�

log
∞
∑

α=1

λαξ̂α

�

= E
�

log
∞
∑

α=1

E[λm
α ]

1/mξα

�

−E
�

log
∞
∑

α=1

ξα

�

=
1

m
logE[λm

1 ]. (11.64)
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We apply Proposition 11.7 with (µα)α∈N = (ξ̂α)α∈N and τα,k i.i.d. uniformly on [q].
We start with G(2)N which is easier. We can write this as

G(2)N =
1

N
E
�

log
∞
∑

α=1

ξ̂αλα

�

, (11.65)

with

λα = exp
�

− β
L
∑

k=1

δ(τα,2k−1,τα,2k)
�

. (11.66)

Note that these λα are not independent of each other because they all depend on the same
L. Therefore it is important to first condition on L, because then the λα are conditionally
independent. Then,

E[λm
1 |L] =

L
∏

k=1

E
�

e−mβδ(τ1,2k−1,τ1,2k)
�

=
�

1−
1

q
+

1

q
e−mβ

�L

. (11.67)

Using this and (11.64),

G(2)N =
1

N
E
�

E
h

log
∞
∑

α=1

ξ̂αλα

�

�

� L
i

�

=
1

N
E
�

L

m
log
�

1−
1

q
+

1

q
e−mβ

��

=
c

2m
log
�

1−
1− e−mβ

q

�

. (11.68)

We can rewrite G(1)N as

G(1)N =
1

N
E
�

log
∞
∑

α=1

µα

∑

σ∈[q]N
exp
�

− β
N
∑

i=1

Ki
∑

k=1

δ(σi ,τα,i,k)
��

, (11.69)

where each Ki = |{k ≤ K : I(k) = i}| is an independent Poisson random variable with
parameter c, because the sum of independent Poisson random variables is again Poisson.
Once again the random variables K1, . . . , KN are the same for all α’s, not independent.
Therefore, we condition on K1, . . . , KN . In this case

λα =
∑

σ∈[q]N
exp
�

− β
N
∑

i=1

Ki
∑

k=1

δ(σi ,τα,i,k)
�

=
N
∏

i=1

q
∑

σi=1

exp
�

− β
Ki
∑

k=1

δ(σi ,τα,i,k)
�

.

(11.70)
The τα,i,k ’s are all independent. In particular they are independent for different values of
i. Therefore,

E[λm
α | K1, . . . , KN ] =

N
∏

i=1

E
�� q

∑

σi=1

e−β
∑Ki

k=1 δ(σi ,τk)
�m �
�

� Ki

�

. (11.71)

Using this,

G(1)N =
1

m
E
�

logE
�� q
∑

σ=1

e−β
∑K1

k=1 δ(σ,τk)
�m �
�

� K1

��

. (11.72)
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We now take the limit m↗ 1. Then,

G(2)N =
c

2
log
�

1−
1− e−β

q

�

. (11.73)

For G(1)N note that in the limit m↗ 1

E
� q
∑

σ=1

e−β
∑K1

k=1 δ(σ,τk)
�

�

� K1

�

=
q
∑

σ=1

K1
∏

k=1

E
�

e−βδ(σ,τk)
�

= q
�

1−
1− e−β

q

�K1

. (11.74)

Hence,

G(1)N = E
�

log
�

q
�

1−
1− e−β

q

�K1
��

= log q+ c log
�

1−
1− e−β

q

�

. (11.75)

Combining gives

pN (β)≤ G(1)N − G(2)N =
c

2
log
�

1−
1− e−β

q

�

+ log q. (11.76)

In the theorem above we used the Poisson point process {ξα}∞α=1 to get the upper
bound. To apply Proposition 11.7, however, it is sufficient that the index set {α} is
countable. Therefore we may consider instead of a single countable index, a pair α =
(α1,α2). We then construct the points ξα in a hierarchical way, i.e., for each α1 we
construct new point process {ξ(2)α2

(α1)}∞α2=1. We show that for appropriate choice of these
point processes and a random probability measure on τα, we get the replica-symmetric
solution.

Proof of Theorem 11.3(b). Let {ξ(1)α1
}∞α1=1 be a Poisson point process with intensity mea-

sure Λm1
, with m1 ∈ (0,1). For α1 = 1,2, . . ., we let {ξ(2)α2

(α1)}∞α2=1 be i.i.d. Poisson

point processes with intensity measure Λm2
, also independent from the process {ξ(1)α1

}∞α1=1.
Then we define

ξα = ξ
(1)
α1
· ξ(2)α2

(α1), (11.77)

and its normalized version

ξ̂α =
ξα

∑

α∈N2 ξα
. (11.78)

Note that
�

∑

α2

ξα

�

α1∈N

d
=
�

E
��

∑

α2

ξ(2)α2
(α1)

�m1
�1/m1

ξ(1)α1

�

α1∈N
, (11.79)

because of (11.62). These expectations are only finite for m1 < m2 and hence we assume
that this holds.

We now apply Proposition 11.7 with (µα)α∈N2 = (ξ̂α)α∈N2 . Furthermore, we choose
the distributions Pk such that they satisfy the assumptions stated in the theorem. Then,
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for all k, the τα,k,α ∈ N, are, given Pk, i.i.d. with distribution Pk. Then, using (11.62)
twice, we can show that

G(1)N =
1

m2
E logE

�� q
∑

σ=1

exp
�

− β
K1
∑

k=1

δ(σ,τk)
�

�m2 �
�

� K1, (Pk)k≥1

�

, (11.80)

where we write τk for a generic τα,k. Similarly,

G(2)N =
c

2m2
E logE

�

e−βm2δ(τ1,τ2)
�

� P1, P2

�

. (11.81)

Taking the limit m2 ↗ 1 and explicitly taking the expectation over the τ’s then proves
the theorem.
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12
PHASE TRANSITION

We now prove that the system undergoes a phase transition if the connectivity constant
c is large enough. Recall that

βc = inf
¦

β : p(β) 6= pHT(β)
©

. (12.1)

We show that the system undergoes a phase transition by giving bounds on βc showing
that βc ∈ (0,∞). We use a constrained second-moment argument to show that there
exists a β2nd > 0, such that p(β) = pHT(β) for β < β2nd. Furthermore, we prove that
for c large enough, there exists a βen < ∞ such that the entropy becomes negative for
β > βen if the high-temperature solution were to be true. This contradiction shows that
p(β) 6= pHT(β) for β > βen.

12.1 Results

We have the following bounds on the critical temperature:

Theorem 12.1 (Bounds on βc). It holds that

β2nd ≤ βc ≤ βen, (12.2)

with

β2nd =























− log
�

1− 2
1+
p

c

�

when q = 2, c > 1,

− log
�

1−
q

2(q−1) log(q−1)
c

�

when q > 2, c > 2(q− 1) log(q− 1),

∞ otherwise.

(12.3)

and

βen = inf
�

β : logq+
c

2
log
�

1−
1− e−β

q

�

<−
β c

2

e−β

q− 1+ e−β

�

, (12.4)

which is finite if

c >
−2 log q

log(1− 1/q)
. (12.5)
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We prove lower bound in Section 12.3 using a constrained second-moment method
similar to that in [1]. The upper bound on βc is proved in Section 12.4 by showing that
the entropy becomes negative for β > βen, which is not possible.

If βen =∞, then the condition in the infimum must not be true in the limit β →∞,
i.e.,

log q+
c

2
log(1− 1/q)≥ 0, (12.6)

and hence,

c ≤
−2 log q

log(1− 1/q)
. (12.7)

We can thus conclude that βen <∞ if

c >
−2 log q

log(1− 1/q)
. (12.8)

12.2 Discussion

Critical temperatures in the physics literature. In [72], it is suggested that the high-

temperature solution becomes unstable at βHT = − log
�

1− q
1+
p

c

�

and hence the high-

temperature solution is not correct for β > βHT. This can be made rigorous, as was shown
in [28]. In combination with Theorem 12.1, this proves that, for q = 2, βc = β2nd = βHT.

Note that βHT is finite for c > (q−1)2. For q = 2,3, 4 it holds that (q−1)2 < −2 log q
log(1−1/q)

so that the instability of the high-temperature solution occurs before the entropy becomes
negative, thus suggesting a second-order phase transition. When q ≥ 5, however, the
opposite is true and hence the system undergoes a first-order phase transition. In [72] it
is suggested that the system has replica symmetry breaking when q ≥ 4.

Graph coloring. The graph coloring problem has been studied using the antiferromag-
netic Potts model in the physics literature, for example in [84, 85, 102]. There it is
suggested that the system undergoes several phase transitions at β =∞ for fixed q when
the connectivity constant c increases. For very small c, almost all solutions to the graph
coloring problem are in a giant cluster, where “clusters are groups of nearby solutions that
are in some sense disconnected from each other” [102]. When c increases, at a certain
point the giant cluster splits into an exponential number of small clusters. After this a
condensation and a rigidity transition occur. Eventually, the graph becomes uncolorable.

This last phase transition from colorable to uncolorable is rigourously analyzed in [1],
where it is shown that if q is the smallest integer satisfying c < 2q log q, then the chromatic
number of the graph, i.e., the least amount of colors necessary to color the graph properly,
is equal to q or q+ 1 with probability 1 in the thermodynamic limit.

12.3 Constrained second-moment method

In this section we prove the lower bound on βc by showing that for β < β2nd it holds that
p(β) = pHT(β). Note that p(β)≤ pHT(β) immediately follows from Theorem 11.3(a) and
it thus remains to show that p(β) ≥ pHT(β). For this we follow [1] where a constrained
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second-moment method was used for the graph coloring problem, which coincides with
the β =∞ case of our model.

We first restrict the partition function to balanced configurations, i.e., to configura-
tions σ ∈ [q]qN such that the number of σi being equal to r is N for all r ∈ [q]. We
denote this balanced partition function by eZN (β), i.e.,

eZN (β) =
∑

σ∈[q]qN

σ balanced

e−βH(σ). (12.9)

Furthermore, we condition on the event that |J | ≡
∑N

i, j=1 Ji, j ≈ cN/2. This condition-
ing on the typical event is important, because else the fluctuations of |J | will cause the
second-moment method to fail. The above constraining is allowed because of the follow-
ing lemma:

Lemma 12.2 (Constraints on the pressure). For all β , c > 0,

p(β)≥ lim
N→∞

1

qN
E
�

log eZqN (β)
�

� |J | ∈ BqN

�

, (12.10)

where

BN =
�

cN

2
− N2/3,

cN

2
+ N2/3

�

. (12.11)

Proof. First of all, note that because of Theorem 10.1 we know that p(β) exists and hence
we can take any subsequence of N →∞. Hence,

p(β) = lim
N→∞

1

N
E[log ZN (β)] = lim

N→∞

1

qN
E[log ZqN (β)]≥ lim

N→∞

1

qN
E[log eZqN (β)],

(12.12)
because the sum in eZqN (β) is over less configurations than the sum in ZqN (β). We can
rewrite,

1

qN
E[log eZqN ] =

1

qN
E
�

log eZqN (β)
�

� |J | ∈ BqN

�

P[|J | ∈ BqN ]

+
1

qN
E
�

log eZqN (β)
�

� |J | /∈ BqN

�

P[|J | /∈ BqN ]. (12.13)

As in (10.32), we can show that a.s.,

1

qN
log eZqN (β)≤ log q. (12.14)

Note that |J | ∼ Poi
�

N2 c
2N

�

= Poi
�

cN
2

�

, so that by the Chebychev inequality,

P[|J | /∈ BqN ] = P
�

�

�|J | − cN/2
�

�≥ N2/3�≤
cN

2N4/3
= o(1). (12.15)

Hence,
1

qN
E[log eZqN ] =

1

qN
E
�

log eZqN (β)
�

� |J | ∈ BqN

�

+ o(1), (12.16)

and the lemma follows.
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We want to use a second-moment method to show that

lim
N→∞

1

qN
E
�

log eZqN (β)
�

� |J | ∈ BqN

�

= pHT(β), (12.17)

and thus need to control the first and second moment of eZqN (β) under the condition that
|J | ∈ BqN . For this, we start with the following technical lemma:

Lemma 12.3. For σ,σ(1),σ(2) ∈ [q]N ,

E
�

e−βH(σ,J)
�

� |J |
�

=
�

1− (1− e−β)
q
∑

r1=1

q2
N (r1)

�|J |

, (12.18)

and

E
�

e−β(H(σ
(1),J)+H(σ(2),J))

�

� |J |
�

=
�

1− (1− e−β)
q
∑

r1=1

�

(q(1)N (r1))
2 + (q(2)N (r1))

2�

+ (1− e−β)2
q
∑

r1,r2=1

q2
N (r1, r2)

�|J |

, (12.19)

where qN (r1) and qN (r1, r2) are the overlaps introduced in (10.7).

Proof. We first compute the conditional probability

P
h

N
⋂

i, j=1

{Ji, j = ki, j}
�

� |J |= k
i

=

∏N
i, j=1 e−c/(2N) (c/(2N))ki, j

ki, j !
1{
∑N

i, j=1 ki, j=k}

e−cN/2 (cN/2)k

k!

=
1

N2k

k!
∏N

i, j=1 ki, j!
.

(12.20)

Hence,

E
�

e−βH(σ,J)
�

� |J |= k
�

=
1

N2k

∑

|J |=k

N
∏

i, j=1

�

e−βδ(σi ,σ j)
�Ji, j

k!
∏N

i, j=1 ki, j!

=
�

1

N2

N
∑

i, j=1

e−βδ(σi ,σ j)
�k

, (12.21)

which follows from the multinomial formula. The first statement of the lemma now
follows by again observing that e−βδ(σi ,σ j) = 1 − (1 − e−β)δ(σi ,σ j). The proof of the
second statement is similar.

For all balanced configurations qN (r) = 1/q. Using this and the previous lemma we
can now control the constrained first moment of eZqN (β):

Lemma 12.4 (Constrained first moment). For all β , c > 0,

lim
N→∞

1

qN
logE

h

eZqN (β)
�

� |J | ∈ BqN

i

= pHT(β). (12.22)
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Proof. For a balanced configuration qN (r1) = 1/q for all r1 ∈ [q]. Hence, it follows from
Lemma 12.3 that

E
h

eZqN (β)
�

� |J | ∈ BqN

i

=QqNE
��

1−
1− e−β

q

�|J |
�

� |J | ∈ BqN

�

, (12.23)

where QqN denotes the number of balanced configurations in [q]qN . Using |J | ∈ BqN and

1− 1−e−β

q
≤ 1,

�

1−
1− e−β

q

�
cqN

2
+(qN)2/3

≤ E
��

1−
1− e−β

q

�|J |
�

� |J | ∈ BqN

�

≤
�

1−
1− e−β

q

�
cqN

2
−(qN)2/3

.

(12.24)
Hence,

lim
N→∞

1

qN
logE

��

1−
1− e−β

q

�|J |
�

� |J | ∈ BqN

�

=
c

2
log
�

1−
1− e−β

q

�

. (12.25)

For the number of balanced configurations

lim
N→∞

1

qN
logQqN = lim

N→∞

1

qN
log
(qN)!
(N !)q

= log q, (12.26)

by Stirling’s formula. Combining the above proves the lemma.

Computing the second moment is more difficult. We first give a variational expression
in the next lemma:

Lemma 12.5 (Constrained second moment). For all β , c > 0,

lim
N→∞

1

qN
logE

�

eZqN (β)
2
�

� |J | ∈ BqN

�

= sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2)), (12.27)

where

φ(2)(q(r1, r2)) =
c

2
log
�

1−
2(1− e−β)

q
+ (1− e−β)2

q
∑

r1,r2=1

q2(r1, r2)
�

−
q
∑

r1,r2=1

q(r1, r2) log q(r1, r2), (12.28)

andB([q]2) denotes those overlaps for which the marginals are balanced, i.e.,
q
∑

r1=1

q2(r1, r2) = 1/q,
q
∑

r2=1

q2(r1, r2) = 1/q, and q2(r1, r2) ∈ [0,1]. (12.29)

Proof. We can write, with Es denoting the expectation over a configuration s = (s(1), s(2)) ∈
[q]2N uniformly chosen from all configurations for which both s(1) and s(2) are balanced,

eZqN (β)
2 =

∑

σ(1),σ(2)∈[q]qN

σ(1),σ(2) balanced

e−β(H(σ
(1))+H(σ(2))) =Q2

qNEs

h

e−β(H(s
(1))+H(s(2)))

i

=Q2
qNEs

��

1−
2(1− e−β)

q
+ (1− e−β)2

q
∑

r1,r2=1

q2
N (r1, r2)

�|J |�

. (12.30)
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Since |J |/N → c/2 for N →∞ if |J | ∈ BN , we can use Sanov’s theorem and Varadhan’s
lemma to obtain [65]:

lim
N→∞

1

qN
logE

�

eZqN (β)
2
�

� |J | ∈ BqN

�

= 2 log q+ sup
q(r1,r2)∈B([q]2)

�

c

2
log
�

1−
2(1− e−β)

q
+ (1− e−β)2

q
∑

r1,r2=1

q2(r1, r2)
�

−
q
∑

r1,r2=1

q(r1, r2) log
�

q2q(r1, r2)
�

�

= sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2)),

(12.31)

where we also used (12.26).

For q = 2 the above optimization problem is one-dimensional and can thus be ana-
lyzed explicitly:

Proposition 12.6 (The case q = 2). For q = 2 and β < β2nd,

sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2)) = 2pHT(β). (12.32)

Proof. By choosing q(r1, r2) = 1/q2, we immediately get

sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2))≥ 2pHT(β). (12.33)

Note that this lower bound holds for all q.
For the upper bound, there exists a θ ∈ [0, 1/2] such that θ = q(1,1) = q(2,2) and

1/2− θ = q(1, 2) = q(2,1). We want to show that

φ(2)(θ)− 2pHT(β)≤ 0. (12.34)

We bound, using log(1+ x)≤ x ,

c

2
log

�1− 2(1−e−β )
q
+ (1− e−β)2

∑q
r1,r2=1 q2(r1, r2)

�

1− (1−e−β )
q

�2

�

=
c

2
log
�

1+
4(1− e−β)2

(1+ e−β)2
(4θ 2 − 2θ +

1

4
)
�

≤
c

2

�

1− e−β

1+ e−β

�2

(4θ − 1)2. (12.35)

Furthermore,

−
q
∑

r1,r2=1

q(r1, r2) log
�

q2q(r1, r2)
�

−2 log q =−2θ log(2θ)−(1−2θ) log(1−2θ). (12.36)

Hence,

φ(2)(θ)−2pHT(β)≤
c

2

�

1− e−β

1+ e−β

�2

(4θ−1)2−2θ log(2θ)−(1−2θ) log(1−2θ)≡ψ(θ).

(12.37)
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Computing the derivative gives

ψ′(θ) = 4c

�

1− e−β

1+ e−β

�2

(4θ − 1)− 2 log(2θ) + 2 log(1− 2θ), (12.38)

so that ψ′(1/4) = 0. The second derivative equals

ψ′′(θ) = 16c

�

1− e−β

1+ e−β

�2

−
2

θ(1− 2θ)
. (12.39)

This is maximal in θ = 1/4, for which 2
θ(1−2θ)

= 16. Hence, ψ(θ) is a concave function
for

c

�

1− e−β

1+ e−β

�2

≤ 1, (12.40)

so that in this case θ = 1/4 is the unique maximizer of ψ(θ) and ψ(1/4) = 0. Hence,
(12.40) gives the condition for which

sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2))≤ 2pHT(β). (12.41)

The condition (12.40) can be rewritten as

β ≤− log
�

1−
2

1+
p

c

�

. (12.42)

For q ≥ 3 the optimization problem is more difficult. We use the results in [1] to get
bounds on the values β for which the above is also true:

Proposition 12.7 (The case q ≥ 3). For q ≥ 3 and β < β2nd,

sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2)) = 2pHT(β). (12.43)

Proof. Again, it follows that

sup
q(r1,r2)∈B([q]2)

φ(2)(q(r1, r2))≥ 2pHT(β), (12.44)

by choosing q(r1, r2) = 1/q2. For the upper bound, let ar1,r2
= q · q(r1, r2) so that

φ(2)(q(r1, r2)) =
c

2
log
�

1−
2(1− e−β)

q
+
(1− e−β)2

q2

q
∑

r1,r2=1

a2
r1,r2

�

−
1

q

q
∑

r1,r2=1

ar1,r2
log ar1,r2

+ log q. (12.45)
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Note that the matrix A = (ar1,r2
)r1,r2∈[q] is a doubly stochastic matrix, i.e., all rows and

columns add up to one. Let ρ be the 2-norm of A, i.e., ρ =
∑q

r1,r2=1 a2
r1,r2

. Then, [1,
Theorem 9] tells us that

−
q
∑

r1,r2=1

ar1,r2
log ar1,r2

≤max
m

�

m log q+ (q−m) f (q, m,ρ) ; 0≤ m≤
q(q−ρ)

q− 1

�

,

(12.46)
for some explicit function f . It thus suffices to show that, for all 1 ≤ ρ ≤ q and 0 ≤ m ≤
q(q−ρ)

q−1
,

c

2
log
�

1−
2(1− e−β)

q
+
(1− e−β)2

q2 ρ

�

+
m log q

q
+

q−m

q
f (q, m,ρ) + log q

≤ 2 log q+ c log
�

1−
1− e−β

q

�

, (12.47)

which can be rewritten as

c

2
log

�1− 2(1−e−β )
q
+ (1−e−β )2

q2 ρ
�

1− 1−e−β

q

�2

�

≤
�

1−
m

q

�

�

log q− f (q, m,ρ)
�

. (12.48)

Note that

log

�1− 2(1−e−β )
q
+ (1−e−β )2

q2 ρ
�

1− 1−e−β

q

�2

�

= log
�

1+
(ρ− 1)(1− e−β)2

(q− (1− e−β))2

�

≤
(ρ− 1)(1− e−β)2

(q− 1)2
.

(12.49)
Hence, (12.47) holds if

c

2
(1− e−β)2

ρ− 1

(q− 1)2
≤
�

1−
m

q

�

�

log q− f (q, m,ρ)
�

. (12.50)

In [1, Theorem 7] it is proved that this holds for

c

2
(1− e−β)2 ≤ (q− 1) log(q− 1), (12.51)

and hence we need that

β ≤− log

 

1−

r

2(q− 1) log(q− 1)
c

!

. (12.52)

The fact that βc ≥ β2nd now follows from a standard second-moment method argu-
ment.
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12.4 Bounds from entropy positivity

The entropy for the Potts model is the following generalization of (3.11):

Definition 12.8. The random entropy density equals

SN =−
1

N

∑

σ∈[q]N
µ(σ) logµ(σ). (12.53)

Then we have the following lemma.

Lemma 12.9 (Entropy positivity). For β ≥ 0,δ > 0 and N ∈ N, a.s.,

0≤ SN (β)≤−β
ψN (β)−ψN (β −δ)

δ
+ψN (β). (12.54)

Proof. Note that µ(σ) ≤ 1, a.s., and hence log(µ(σ)) ≤ 0. From this the lower bound
immediately follows.

For the upper bound, note that

∂

∂ β
ψN (β) =

∂

∂ β

1

N
log ZN (β) =−

1

N

∑

σ∈[q]N H(σ)e−βH(σ)

ZN (β)
=−

1

N
〈H(σ)〉 . (12.55)

Combined with

log(µ(σ)) = log

�

e−βH(σ)

ZN (β)

�

=−βH(σ)− log ZN (β), (12.56)

this gives

SN (β) =
1

N

∑

σ∈[q]N
µ(σ)

�

βH(σ) + log ZN
�

=
β

N
〈H(σ)〉+ψN (β)

=−β
∂

∂ β
ψN (β) +ψN (β). (12.57)

Furthermore, ψN (β) is a convex function of β , because

∂ 2

∂ β2ψN (β) =
1

N

∑

σ∈[q]N (H(σ))
2e−βH(σ)

ZN (β)
+

1

N

 ∑

σ∈[q]N H(σ)e−βH(σ)

ZN (β)

!2

=
¬

(H(σ))2
¶

− 〈H(σ)〉2 ≥ 0. (12.58)

Hence,
∂

∂ β
ψN (β)≥

ψN (β)−ψN (β −δ)
δ

. (12.59)

Combining this with (12.57) proves the lemma.

We can use this lemma to give an upper bound on βc .
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Proposition 12.10. For q > 1,

βc ≤ βen ≡ inf
�

β : log q+
c

2
log
�

1−
1− e−β

q

�

<−
β c

2

e−β

q− 1+ e−β

�

. (12.60)

Proof. Suppose that βc > β
en. Then, there is a β such that p(β) = pHT(β) and p(β−δ) =

pHT(β −δ), and

log q+
c

2
log
�

1−
1− e−β

q

�

<−
β c

2

e−β

q− 1+ e−β
. (12.61)

But we know from Lemma 12.9 that, a.s.,

− β
ψN (β)−ψN (β −δ)

δ
+ψN (β)≥ 0, (12.62)

and hence this also holds in expectation:

− β
pN (β)− pN (β −δ)

δ
+ pN (β)≥ 0. (12.63)

Taking the limit of N →∞ then gives

− β
pHT(β)− pHT(β −δ)

δ
+ pHT(β)≥ 0, (12.64)

because of our assumption on β . Since pHT(β) is analytic, we can take the limit δ↘ 0,
so that

− β
∂

∂ β
pHT(β) + pHT(β)≥ 0. (12.65)

Using pHT(β) = log q+ c
2

log
�

1− 1−e−β

q

�

then gives,

log q+
c

2
log
�

1−
1− e−β

q

�

≥−
β c

2

e−β

q− 1+ e−β
, (12.66)

which is in contradiction with (12.61).
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[69] S. Janson, T. Łuczak and A. Ruciński. Random Graphs. John Wiley & Sons, New
York, (2000).

[70] H. Jeong, S.P. Mason, A.-L. Barabási and Z.N. Oltvai. Lethality and centrality in
protein networks. Nature, 411:41–42, (2001).

[71] D.G. Kelly and S. Sherman. General Griffiths’ inequalities on correlations in Ising
ferromagnets. Journal of Mathematical Physics, 9(3):466–484, (1968).

[72] F. Krza̧kała and L. Zdeborová. Potts glass on random graphs. Europhysics Letters,
81:57005, (2008).

[73] T. Kuran. The East European revolution of 1989: is it surprising that we were
surprised? The American Economic Review, 81(2):121–125, (1991).

[74] M. Leone, A. Vázquez, A. Vespignani and R. Zecchina. Ferromagnetic ordering in
graphs with arbitrary degree distribution. The European Physical Journal B, 28:191–
197, (2002).

[75] D. Liben-Nowell and J. Kleinberg. Tracing information flow on a global
scale using Internet chain-letter data. Proceedings of the National Academy of
Sciences,105(12):4633–4638, (2008).

[76] R. Lyons. The Ising model and percolation on trees and tree-like graphs. Commu-
nications in Mathematical Physics, 125:337–353, (1989).

[77] R. Lyons. Random walks and percolation on trees. The Annals of Probability,
18(3):931–958, (1990).

[78] R. Lyons, R. Pemantle and Y. Peres. Ergodic theory on Galton-Watson trees: speed of
the random walk and dimension of harmonic measure. Ergodic Theory and Dynamical
Systems, 15(3):593–619, (1995).

[79] M. Mézard and A. Montanari. Reconstruction on trees and spin glass transition.
Journal of Statistical Physics, 124(6):1317–1350, (2006).
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