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Abstract. We design a simple PTAS for a multi depot capacitated ve-
hicle routing problem. In this problem a set of customers and set of
depots are represented by points in the Euclidean plane. Vehicles have
capacities expressed in the number of customers that can be visited on
one route starting and ending in a depot. The objective is to determine
a set of routes such that all customers are visited and the total length
of the routes is minimized. Our results extend the results by Haimovich
and Rinnooy Kan [6].

1 Introduction

The basic logistic operation of serving customers with transportation requests by
vehicles operated from some depot such as to minimize overall transportation
costs is the common theme of vehicle routing problems. They belong to the
most intensively studied problems in operations research. Most of the research is
inspired and directed by practical logistic applications. Surveys of various models
and solution methods have appeared in [5], [11] and [12].

The vehicle routing problem which is the subject of this paper is to determine
a set of tours of minimum total length such that each of a set of customers,
represented by points in the Euclidean plane, is on a tour and such that each
tour does not visit more than some given fixed number of customers (the capacity
of each vehicle). We assume that all vehicles have the same fixed capacity. The
tours are to start and end at a depot. Our results hold for two versions of the
problem, one in which each vehicle has to end at the same depot where it starts
and the other version where this restriction is not imposed. We notice that the
latter version reduces to a single depot problem if the customers are vertices
of a graph. However, we consider points in the Euclidean plane for which both
versions are relevant.

As a generalisation of the famous travelling salesman problem, in which all
customers have unit demand and the vehicle has unlimited capacity, almost all
variations of the vehicle routing problem are NP-hard [8] and do not admit high
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quality polynomial time approximations. A computer-aided complexity classifi-
cation of a large class of vehicle routing problems with unit demand of customers
has been given in [9]. They highlight some of the intriguing open complexity
problems, but do not present approximability and non-approximability results.

Probably the most famous positive result in approximation for routing prob-
lems is the celebrated polynomial time approximation scheme (PTAS) that Arora
[1] devised for the travelling salesman problem in Euclidean finite-dimensional
spaces. However, more than a decade earlier, the first such positive result for
routing problems was given by Haimovich and Rinnooy Kan [6], who designed
a relatively simple PTAS for the capacitated vehicle routing problem described
above on the Euclidean plane (see also [7]) in which there is only one depot.
Recently, the running time of this PTAS has been improved by Asano et al. [2].
Even more recently, some bounds of Haimovich and Rinnooy Kan for VRP have
been improved by Bompadre et al. [3]. These papers consider problems with a
single depot. Charikar et al. [4] derived the strongest constant approximation
algorithm for a generalization of the problem, in which items have to be picked-
up and delivered ar various points. Their results hold for any metric version of
the problem.

We present here, what is to the best of our knowledge, the first PTAS for
a multi depot vehicle routing problem. In particular, we show in Section 2 how
the PTAS in [6] for the single depot version can be adapted to a PTAS for multi
depot versions. In Section 3 we improve the running time considerably by an
extension of the results by Asano et al. [2] to the multi depot version of the
problem.

2 A polynomial time approximation scheme

In the Multiple Depot Vehicle Routing Problem (MDVRP) we are given sets
of points X = {x1, . . . , xn} (customers) and Y = {y1, . . . , yd} (depots) in the
Euclidean plane, and a positive integer q. The problem is to find a set of paths
that cover all customers and where each path starts and ends in some depot and
visits no more than q customers. We distinguish between the problem where the
starting point of each path is the same as its end point, and the problem where
these points may differ. The goal is to minimize the total length of the paths
and we denote the optimal value by Opt(X).

Below we will explicitly analyse the case in which the vehicles have to return
to their starting depot and mention in the text where and how the analysis differs
in the other case. In fact it turns out that the former case is the difficult one
from an approximation point of view. The approximation scheme here is similar
to the one in [6] that deals with the single depot problem.

With δ(x, y) we denote the distance between the two points x and y. Let rj
be the distance of customer j to its nearest depot: rj = mini=1,...,d δ(xj , yi). The
approximation algorithms have the following structure:
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1. Compute the rj ’s and relabel the customers x1, x2, . . . , xn such that r1 ≥
r2 ≥ . . . ≥ rn. Partition X into X1, . . . , Xd such that customer j is assigned
to Xi only if depot i is the depot nearest to xj (breaking ties arbitrarily);

2. Define X(k) := {x1, . . . , xk}, the set of k customers that are furthest away
from their nearest depot, andX\X(k), where k = f(q, d, ε) for some function
f (to be specified later);

3. Compute the optimal set of tours for the customers in the set X(k);
4. Apply an approximation algorithm for every depot i and set of customers
Xi \X(k).

We prove that this algorithmic scheme is in fact a PTAS if d, the number of
depots, and q, the common vehicle capacity, are constants. Thereto we must
bound (i) the error that we make by partitioning the set of customers in X(k)
and X \X(k) and (ii) the error made by applying an approximation algorithm
for customers in X \X(k). We also have to prove that in step 2 the number k
can be chosen independently of n. In fact it would be enough if k would not grow
too fast with n, so that step 3 can be done in time polynomial in n for fixed d, q
and ε.

Lemma 1. For any k ∈ {0, 1, . . . , n},

Opt(X(k)) + Opt(X \X(k)) − Opt(X) ≤ 2(q − 1)krk.

Proof. Take a circle with radius rk around each depot. We refer to the customers
j with j ≥ k+1 as inside points and the customers j with j ≤ k as outside points.
Consider an optimal solution to the problem. For each tour in this solution that
contains an outside point, hence at most q − 1 inside points, we shortcut the
tour in such a way that the vehicle only visits outside points. By the triangle
inequality, this does not increase the length of the tour. Each of the remaining
inside points on the tour are visited by a separate vehicle, starting from and
returning to the nearest depot. Thus, for every inside point a tour of length
at most 2rk is added. Hence, for each tour that contains an outside point we
make an error of at most 2rk(q − 1). This together with the fact that there are
k outside points, hence at most k tours in the optimal solution that contain an
outside point, proves the lemma. ⊓⊔
In case the vehicles do not have to return to the depot from which they started,
this bound can be improved to 4krk as in [6].

In step 4 one can use any of the approximation algorithms applicable in the
PTAS in [6]. We select here the tour partitioning heuristic. It starts with a 2-
approximate TSP-tour on Xi \X(k) obtained e.g. by the standard double tree
algorithm (see e.g. [10]). Then, following the tour in one of the two directions,
chosen arbitrarily, every (q + 1)-th edge encounterd is deleted, obtaining paths
with exactly q customers on it except for possibly the last one. Finally, the end
points of these paths are connected to depot i. One can prove ([6]) that the total
length of these tours, denoted by H(Xi \X(k)), satisfies:

H(Xi \X(k)) ≤ 2
ni

q
ri + c1r

i
max + c2

√

niri
maxr

i ,
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where ni is the number of customers in Xi\X(k) and ri and ri
max are the average

distance and the maximum distance respectively of the customers in this set. The
constants are given by c1 = 10 + 4π and c2 = 8

√
π.

Summing over all depots gives an upper bound on the total length of all tours
computed in step 4:

Lemma 2.

H(X \X(k)) ≤ 2

q

n
∑

j=k+1

rj + dc1rk + c2

d
∑

i=1

√

nirkr
i.

⊓⊔
The following simple lower bound on Opt(X) can be proven in a similar way as
in [6]:

Lemma 3.

Opt(X) ≥ 2

q

∑

rj

Proof. Let, in the optimal solution, Vh be the set of customers visited by the
h-th vehicle and T ∗(Vh) the length of the tour serving them. Then

T ∗(Vh) ≥ 2 max
xj∈Vh

{rj} ≥ 2

∑

xj∈Vh
rj

|Vh|
≥ 2

∑

xj∈Vh
rj

q
,

which summed over all h proves the bound. ⊓⊔
Lemma 3 holds for any setX . In particular, we have Opt(X\X(k)) ≥ 2

q

∑n
j=k+1 rj .

We are ready to bound the relative error

e(k) =
Opt(X(k)) +H(X \X(k)) − Opt(X)

Opt(X)
.

For simplifying notation we write
∑

rj for
∑n

j=1 rj and r for the average distance
∑

rj/n.

Theorem 1.

e(k) ≤
(

q(q − 1)k +
dqc1

2

)

rk
∑

rj
+
dqc2

2

√

rk
∑

rj

Proof.

e(k) ≤
Opt(X(k)) +H(X \X(k)) + Opt(X \X(k)) − 2

q

∑n
j=k+1 rj − Opt(X)

Opt(X)

≤
2(q − 1)krk + 2

q

∑n
j=k+1 rj + dc1rk + c2

∑d
i=1

√

nirkr
i − 2

q

∑n
j=k+1 rj

2
q

∑

rj

=

(

q(q − 1)k +
dqc1

2

)

rk
∑

rj
+
qc2
2

∑d
i=1

√

nirkr
i

∑

rj

≤
(

q(q − 1)k +
dqc1

2

)

rk
∑

rj
+
dqc2

2

√

rk
∑

rj
, (1)
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where we we used Lemma 3 for the first inequality, Lemmas 1 and 2 for the

second one, and the fact that
√

nir
i/
√
∑

rj ≤ 1 for the last one. ⊓⊔

The next theorem states that a value of k, for which e(k) ≤ ε, can be chosen
independent of n. The proof is similar to that of the corresponding result in [6].

Theorem 2. e(k) ≤ ε for

k =









(

1 +
dc1

2(q − 1)

)



exp





q(q − 1)

ε
+

√

2c22
c1

√

dq

ε



− 1













=: f(d, q, ε).

Proof. Using (1) we write e(k) ≤ ε as a quadratic equation in
√

rk
∑

rj
:

(

k +
dc1

2(q − 1)

)(
√

rk
∑

rj

)2

+
dc2

2(q − 1)

√

rk
∑

rj
− ε

q(q − 1)
≤ 0. (2)

Since we want k to be the smallest integer that satisfies (2), for k′ < k,
√

rk′/
∑

rj
should be bigger than the positive root of this equation:

√

rk′

∑

rj
>

−B +
√

B2 + 4(k′ +A)C

2(k′ +A)
,

where A = dc1

2(q−1) , B = dc2

2(q−1) and C = ε
q(q−1) . Therefore

1 ≥
∑k−1

k′=1
r′

k
∑

rj
>
∑k−1

k′=1

(

−B+
√

B2+4(k′+A)C

2(k′+A)

)2

≥ C
∑k−1

k′=1
1

k′+A −B
√
C
∑k−1

k′=1
1

(k′+A)3/2 .

We use that
k−1
∑

k′=1

1

k′ +A
>

∫ k+A

1+A

1

z
dz = ln

k +A

1 +A
,

and

k−1
∑

h=1

1

(h+A)3/2
<

∫ k−1+A

A

1

z3/2
dz <

2√
A
,

to conclude that

C ln
k +A

1 +A
−B

√
C

2√
A
< 1,

and thus

k − 1 < (1 +A)

(

exp

(

1 + 2B
√

C/A

C

)

− 1

)

.
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Now we reinsert the constants:

k − 1 <

(

1 +
dc1

2(q − 1)

)



exp





1 + 2 dc2

2(q−1)

√

ε
q(q−1)

2(q−1)
dc1

ε
q(q−1)



− 1





=

(

1 +
dc1

2(q − 1)

)(

exp

(

q(q − 1)

ε
+
dqc2
ε

√

2ε

dqc1

)

− 1

)

=

(

1 +
dc1

2(q − 1)

)



exp





q(q − 1)

ε
+

√

2c22
c1

√

dq

ε



− 1



 .

Since k − 1 is the largest integer for which (2) is not true, we can take

k =









(

1 +
dc1

2(q − 1)

)



exp





q(q − 1)

ε
+

√

2c22
c1

√

dq

ε



− 1













.

to make sure that e(k) ≤ ε. ⊓⊔

As a last part of the PTAS proof we analyse the running time. In the first
step of the algorithm all distances have to be computed which takes time O(dn)
and then have to be sorted, which takes time O(n log n). Step 2 can be done
in constant time assuming d, q and ǫ to be constants. Computing the optimal
solution in step 3 takes O(kq2k) time using dynamic programming as follows.
For any subset S of X(k) store the length Opt(S) of the optimal solution.
If |S| ≤ q then its value is computed in O(2q) time. For larger sets we use
Opt(S) = min{Opt(S′)+Opt(S \S′) | S′ ⊂ S, |S′| ≤ q}. Computing one value
takes O(kq) time. Step 4 of the algorithm takes no more than O(ni logni) time
for every depot i (see e.g. [10]), summing up to O(n log n). The total running
time of the algorithm is

O

(

dn+ n logn+ 2
d
q 2

O

(

q2

ε
+

√
dq
ε

))

.

It should be noted, that in case the vehicles don’t have to return to the depot
from which they started, the q2 can be replaced by q in the expression above.
This because of the stronger bound of Lemma 1.

3 Improving the running time

In this section, we use a similar approach as in [2] to get rid of the double
exponential term in the running time, caused by enumerating the optimal tours
covering outside points X(k). First, we review some bounds from [6] and [2].

The iterated tour partitioning algorithm (ITP) is defined as follows. Let T
be some TSP-tour on a set of points, W say. As in the tour partitioning heuristic
described in the previous section, the tour is partitioned into parts of q points
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(and possibly one smaller part) and the endpoints of each part are connected
with the depot. However, here we do this q times, where each time the partition
is shifted one step and take the smallest solution found. In this section we will
refer to feasible tours, i.e., tours with at most q customers and depots at the
start and the end, as q-tours.

Lemma 4 ([6]). The length of the ITP-solution is at most 2
q

∑

j∈W rj + (1 −
1/q)|T |.
Lemma 5 ([2]). Given a set X of n points in the Euclidean plane. let rmax =
max{r1, r2, . . . , rn}. The length of an optimal TSP tour on X is bounded by

TSP (X) ≤ 10

√

rmax

∑

j∈X

rj .

The main idea in improving the running time is to relax the partition in inside
and outside points. For a set of points U with X(k) ⊆ U ⊆ X we define,

Z(X,U) = Opt(U) +
2

q

∑

i∈X\U

ri. (3)

The objective is to find a set U ⊇ X(k) that minimizes Z(X,U). Denote this
problem by P and the minimum value of an instance by Opt(X,X(k)). ⊓⊔
Lemma 6.

Opt(X,X(k)) ≤ Opt(X). (4)

Proof. Let T be an optimal set of tours of X and let U be the set of points
covered by the q-tours of T that contain at least one outside point. Clearly,
U ⊇ X(k) and

Opt(X) = Opt(U) + Opt(X \ U) ≥ Opt(U) +
2

q

∑

j∈X\U

rj = Z(X,U),

where the inequality follows from applying Lemma 3 to the pointset X \ U . ⊓⊔
Later we show how to compute a solution U for P with a corresponding set of
tours on U . We use ITP for the points not covered by U , i.e., we apply ITP on
each of the depots Yi with the pointset Xi \ U . For constructing the TSP-tours
we use the 2-approximate double-tree solution. Thus, given an optimal solution
U , the length of the constructed solution is Opt(U) plus the cost of ITP on each
of the depots, which is bounded from above

Opt(U) +

d
∑

i=1





2

q

∑

j∈Xi\U

rj + 2

(

1 − 1

q

)

TSP (Xi \ U)





= Opt(X,X(k)) + 2(1 − 1

q
)

d
∑

i=1

TSP (Xi \ U). (5)

Let rε(X, d) = ε2(10qd)−2
∑

j∈X rj .
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Lemma 7. For every k with rk ≤ rε(X, d) and i ∈ {1, . . . , d},

TSP (Xi \ U) ≤ ε

2d
Opt(X,X(k)). (6)

Proof. We use Lemma 5 on the point set Xi \ U . For any point in this set its
distance to depot Yi is at most rk ≤ rε(X, d).

TSP (Xi \ U) ≤ 10
(

rk
∑

j∈Xi\U rj

)1/2

≤ 10
(

rk
∑

j∈X rj

)1/2

≤ 10
(

ε2(10qd)−2(
∑

j∈X rj)
2
)1/2

= ε
2d

2
q

∑

j∈X rj

≤ ε
2dOpt(X,X(k)).

⊓⊔

Using Lemmas 6 and 7, the total length, given in (5), is bounded by

Opt(X,X(k)) + 2(1 − 1
q )
∑d

i=1
ε
2dOpt(X,X(k)) < (1 + ε)Opt(X,X(k))

≤ (1 + ε)Opt(X).

Next we show how to get a (1+ε)-approximate solution U for P . Then, the total
approximation factor will become (1 + ε)2. The grid approach used in [2] (See
also [1]) for the single depot problem applies here with little adjustment. Let W
be an optimal solution for P . We may assume that each tour in a corresponding
set of optimal tours contains at least one point fromX(k). Hence, we may assume
|W | ≤ qk. Now we take a grid of (qk/ε)× (qk/ε) points and move each point in
W to its nearest grid point. Then one can easily show that the extra cost is at
most a factor 1/ǫ of the total length.

We call two solutions U1 and U2 equivalent if they round to the same multi-
set of grid points and a maximal set of equivalent solutions form an equivalence
class.

For any solution U we approximate the value Z(X,U) by taking the optimal
set of tours through the rounded solution but using the unrounded points for the
second term of Z(X,U). For any equivalence class U we can easily find a solution
U that minimizes this approximate value within this class as follows. Since the
first term in Z(X,U) is the same within the class we only need to consider the
second term. For a point xj let ψ(xj) be the grid point to which it is rounded.
Suppose that the cardinality of some grid point g in the multiset U is t and
assume ψ−1(g) ∩ X(k) = s. Then we add the t − s points from ψ−1(g) \X(k)
with largest value rj to U . Further, we add all points X(k).

Now we simply enumerate over all equivalence classes and within each equiv-
alence class U we enumerate over all possible sets of tours. A tour may be
encoded as an ordering of U together with a vector in {1, 2, . . . , d}|U| indicating

8



the depots used. Thus, the minimum over all equivalence classes can be found
in O

(

((qk/ε)2)qkdqk
)

time.

Assuming k satisfies rk ≤ rε(X, d) we must have k ≤ (10qd)2/ε2. Substituting

this upper bound on k we obtain a total time of (qd/ε)O(q3d2/ε2). Iterated tour
partitioning takes O(n logn) time.

Theorem 3. There is a PTAS for MDVRP with running time (qd/ε)O(q3d2/ε2)+
O(n log n).

4 Epilogue

We constructed a PTAS for a multi depot capacitated vehicle routing problem.
The basic PTAS is rather simple and is obtained by adapting the ideas in [6] to
the multi depot situation. The improvements that we obtained in the previous
section are based on similar ideas for the single depot version in [2].

From the expression of the running time in Theorem 3 we see that the PTAS
also holds if q = O(log n) and d = O(log n). It would be interesting to find
out how far these functions for q and d can be pushed such that the problem
remains in the class PTAS. For which functions for q and d will the problem
become APX-hard?
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