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There are many complex real-world networks, e.g.

» Social networks (friendships, business relationships, sexual
contacts, ...)

» Information networks (World Wide Web, citations, ...)
» Technological networks (Internet, airline routes, ...)
» Biological networks (protein interactions, neural networks,...)

Sexual network Colorado
Springs, USA
(Potterat, et al., 2002)
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There are many complex real-world networks, e.g.

» Social networks (friendships, business relationships, sexual
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Information networks (World Wide Web, citations, ...)
Technological networks (Internet, airline routes, ...)
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Small part of the Internet
http://www.fractalus.com/
steve/stuff/ipmap/
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There are many complex real-world networks, e.g.

» Social networks (friendships, business relationships, sexual
contacts, ...)

» Information networks (World Wide Web, citations, ...)
» Technological networks (Internet, airline routes, ...)
» Biological networks (protein interactions, neural networks,...)

Yeast protein interaction
network
(Jeong, et al., 2001)
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Properties of complex networks

Power law behavior
Number of vertices with degree k is proportionalto k=

Bell Curve Power Law Distribution

Very many nodes

‘7/‘ with only a few links

Most nodes have
the same number of links

A few hubs with

Number of nodes with k links
Number of nodes with k links

2;:::;%?3 nodes 1 y large number of links
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Small worlds
Distances in the network are small
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Random graph models
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Erd6s-Rényi random graph
» Start with n vertices

» Draw edges between each pair of vertices with probability p

Exponential tails, so no power-law distribution
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Random graph models

4/16
Erd6s-Rényi random graph
» Start with n vertices
» Draw edges between each pair of vertices with probability p

Exponential tails, so no power-law distribution

Configuration model

» Start with n vertices

» Let vertex i have D; half-edges
D; has power-law distribution with exponent ¢

» Connect the half-edges uniformly at random

Power-law because of Strong Law of Large Numbers
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Random graph models (continued)
Preferential attachment (PA)

» Networks are growing

» Popular vertices are more likely to get more edges
than unpopular vertices
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Random graph models (continued)
Preferential attachment (PA)

» Networks are growing
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» Popular vertices are more likely to get more edges
than unpopular vertices

PA model

» Choose integer m, and parameter§ > —m

» Start at time t = 2 with 2 vertices connected with 2m edges
» At each time step, say t + 1, add a new vertex with m edges
» Connect its m edges independently according to

D;(t 1)
Pledgeof t +1 — i|PALs(t)] = % fori e [t].
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Properties of PA model

Power law with exponent

1)
T=3+—
m
So any exponent t > 2 possible
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Properties of PA model

Power law with exponent

1)
T=3+—
m
So any exponent t > 2 possible

The diameter of a graph at time t, diam(t),
is the largest distance present in the graph at time t
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Properties of PA model
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Power law with exponent

1)
T=3+—
m
So any exponent t > 2 possible

The diameter of a graph at time t, diam(t),
is the largest distance present in the graph at time t

T = 3 (Bollobas and Riordan, 2004)
Form > 2 and § = 0, with high probability,
logt log t

<diam(t) < (1
loglogt — lam(t) =< ( Jrg)loglogt

1—-2¢)

foralle > 0
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Properties of PA model (continued)
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7 > 3 (Van der Hofstad and Hooghiemstra, 2008)
For m > 2 and § > 0, with high probability,

¢i logt < diam(t) < ¢, logt

forsomecy,¢c; > 0

7 € (2, 3) (Van der Hofstad and Hooghiemstra, 2008)
Form > 2 and § € (—m, 0), with high probability,

diam(t) < cloglogt

forsomec > 0
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log log lowerbound for 7 > 2

Theorem
Consider preferential attachment withm > 2 and§ > —m (i.e. T > 2)

Letk = = loglogt, with0 < ¢ < 1

logm
Then, with high probability,

diam(2t) > k
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Proper k-exploration trees
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Construction of k-exploration tree of a vertex i

Start from vertex i

Connect its m edges — vertices at distance 1 from vertex i
Connect the m edges of vertices at distance 1, — ...
Continue in same fashion, up to distance k

v

v

v

v

Exampleform =2,k =3 andi = 30

30
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Construction of k-exploration tree of a vertex i

Start from vertex i
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Construction of k-exploration tree of a vertex i

Start from vertex i

Connect its m edges — vertices at distance 1 from vertex i
Connect the m edges of vertices at distance 1, — ...
Continue in same fashion, up to distance k
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Proper k-exploration trees
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Construction of k-exploration tree of a vertex i

Start from vertex i

Connect its m edges — vertices at distance 1 from vertex i
Connect the m edges of vertices at distance 1, — ...
Continue in same fashion, up to distance k
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Proper k-exploration trees
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Construction of k-exploration tree of a vertex i

Start from vertex i

Connect its m edges — vertices at distance 1 from vertex i
Connect the m edges of vertices at distance 1, — ...
Continue in same fashion, up to distance k
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Exampleform =2,k =3 andi = 30
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Proper k-exploration trees
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Construction of k-exploration tree of a vertex i

Start from vertex i

Connect its m edges — vertices at distance 1 from vertex i
Connect the m edges of vertices at distance 1, — ...
Continue in same fashion, up to distance k
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v

Exampleform =2,k =3 andi = 30
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Proper k-exploration trees (continued)

A k-exploration tree is proper when
» The k-exploration tree has no collisions
» No other vertex connects to a vertex in the tree
» All vertices of the tree are in [2t]\[{]

Exampleform =2,k =3 andi =30
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Proper k-exploration trees (continued)

A k-exploration tree is proper when
» The k-exploration tree has no collisions
» No other vertex connects to a vertex in the tree
» All vertices of the tree are in [2t]\[{]

Exampleform =2,k =3 andi =30

1617 1819 2223
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Proper k-exploration trees (continued)

A k-exploration tree is proper when
» The k-exploration tree has no collisions
» No other vertex connects to a vertex in the tree
» All vertices of the tree are in [2t]\[{]

Exampleform =2,k =3 andi =30
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Proper k-exploration trees (continued)

A k-exploration tree is proper when
» The k-exploration tree has no collisions
» No other vertex connects to a vertex in the tree
» All vertices of the tree are in [2t]\[{]

Exampleform =2,k =3 andi =30

1617 1819 20 21 2223
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Number of proper k-exploration trees

Zi(2t) = # proper k-exploration trees at time 2t
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Number of proper k-exploration trees

Zi(2t) = # proper k-exploration trees at time 2t

Then
P [diam(2t) < k] < P[Z(2t) = 0]
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Number of proper k-exploration trees

Zi(2t) = # proper k-exploration trees at time 2t

Then
P [diam(2t) < k] < P[Z(2t) = 0]

Using Chebychev inequality gives

Var [Z,(21)] o

PlZy(2t) =0
[Zk(2t) = 0] < E(Ze20]
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Number of proper k-exploration trees

Zi(2t) = # proper k-exploration trees at time 2t

Then
P[diam(2t) < k] < P [Zx(2t) = 0]
Using Chebychev inequality gives

Var[z«@b] 2 o

P|Z.(2t) =0
[Zk(2t) = 0] < EZ 20

We need

E[Z«(2t)] — oo and Var[Z«(2t)] < E[Z«(2)]?
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E[Zx(2t)] — oo

By = “no other vertex connects to a vertex in the tree 7”
Then

E[Z«2t)] =E| Y  I{T S PAgy;s(2t)and T is proper}

T possible
= Y P[T SPAn;s(2t)and 7 is proper]
T possible
= Y P[T SPAns(2D)]-P[Br|T S PAn,(21)]
J possible
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E [Zx(2t)] —> oo (continued)

E(Z20)]= Y P[T CPAns(20)]-P[Br|T C PAn,(20)]

T possible
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E [Zx(2t)] —> oo (continued)

E[Ze2D)] = Y P[T CPAn(20)] P[Br|T S PAps(20)]

T possible

Vv
N
~| =
N—
B
iR
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E [Zx(2t)] —> oo (continued)

E(Z20)]= Y P[T CPAns(2D]-P[Br[T C PA,,(20)]

T possible

Vv
N
~| =
N—
B
T
-
N

Y

|
-3
N———"
3

nnnnnnnn

/ department of mathematics and computer science



E [Zx(2t)] —> oo (continued)

ElzZc2h]= ) P[T CPAns(2D)]-P[Br|T C PAy,(20)]

J possible

o (Lt 71 1\ 1711 . 7™
~ AT t t
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E [Zx(2t)] —> oo (continued)

E(Z20)]= Y P[T CPAns(20)]-P[Br|T C PAn,(20)]

T possible

(Lt 1 1\ 1711 . T\™
~\UT t t

1 (log )® .
~ <(log t)8> e e
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Var [Z.21)] < E[Z(21)]?

Study covariance of two different possible trees being formed in the
graph and being proper

Take exact look at probabilities involved

Conclusion

(logt)?

—EZ@D) + E[Z20] < E[Z20]

Var[Zx(2t)] < ¢
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log log lowerbound for 7 > 2

Theorem
Consider preferential attachment withm > 2 and§ > —m (i.e. T > 2)

Letk = = loglogt, with0 < ¢ < 1

logm

Then, with high probability,

diam(2t) > k

Proof

P[diam(2t) > k] > 1 — P[Z(2t) = 0]
g Var [Zx(21)]
T ElzZa@v)?
— 1
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Small world property holds in preferential attachment model

Future research
» Better bounds on distances
» Distances in other extended PA models
» Processes on random graphs
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