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Introduction

There are many complex real-world networks, e.g.
I Social networks (friendships, business relationships, sexual

contacts, . . . )
I Information networks (World Wide Web, citations, . . . )
I Technological networks (Internet, airline routes, . . . )
I Biological networks (protein interactions, neural networks,. . . )

Sexual network Colorado
Springs, USA
(Potterat, et al., 2002)
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Small part of the Internet
http://www.fractalus.com/

steve/stuff/ipmap/
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Introduction

There are many complex real-world networks, e.g.
I Social networks (friendships, business relationships, sexual

contacts, . . . )
I Information networks (World Wide Web, citations, . . . )
I Technological networks (Internet, airline routes, . . . )
I Biological networks (protein interactions, neural networks,. . . )

Yeast protein interaction
network
(Jeong, et al., 2001)
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Properties of complex networks

Power law behavior
Number of vertices with degree k is proportional to k−τ

Small worlds
Distances in the network are small



4/16

/ department of mathematics and computer science

Random graph models

Erdős-Rényi random graph
I Start with n vertices
I Draw edges between each pair of vertices with probability p

Exponential tails, so no power-law distribution

Configuration model
I Start with n vertices
I Let vertex i have Di half-edges

Di has power-law distribution with exponent τ
I Connect the half-edges uniformly at random

Power-law because of Strong Law of Large Numbers
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Random graph models (continued)

Preferential attachment (PA)
I Networks are growing
I Popular vertices are more likely to get more edges

than unpopular vertices

PA model
I Choose integer m, and parameter δ > −m
I Start at time t = 2 with 2 vertices connected with 2m edges
I At each time step, say t + 1, add a new vertex with m edges
I Connect its m edges independently according to

P
[
edge of t + 1 −→ i

∣∣PAm,δ(t)
]
=

Di (t)+ δ
t(2m + δ)

, for i ∈ [t ].
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Properties of PA model

Power law with exponent

τ = 3+
δ

m
So any exponent τ > 2 possible

The diameter of a graph at time t , diam(t),
is the largest distance present in the graph at time t

τ = 3 (Bollobás and Riordan, 2004)
For m ≥ 2 and δ = 0 , with high probability,

(1− ε)
log t

log log t
≤ diam(t) ≤ (1+ ε)

log t
log log t

for all ε > 0
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Properties of PA model (continued)

τ > 3 (Van der Hofstad and Hooghiemstra, 2008)
For m ≥ 2 and δ > 0, with high probability,

c1 log t ≤ diam(t) ≤ c2 log t

for some c1, c2 > 0

τ ∈ (2,3) (Van der Hofstad and Hooghiemstra, 2008)
For m ≥ 2 and δ ∈ (−m,0), with high probability,

diam(t) ≤ c log log t

for some c > 0
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log log lowerbound for τ > 2

Theorem
Consider preferential attachment with m ≥ 2 and δ > −m (i.e. τ > 2)

Let k = ε
logm log log t , with 0 < ε < 1

Then, with high probability,

diam(2t) ≥ k
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Proper k -exploration trees

Construction of k -exploration tree of a vertex i
I Start from vertex i
I Connect its m edges−→ vertices at distance 1 from vertex i
I Connect the m edges of vertices at distance 1,−→ . . .

I Continue in same fashion, up to distance k

Example for m = 2, k = 3 and i = 30



9/16

/ department of mathematics and computer science

Proper k -exploration trees

Construction of k -exploration tree of a vertex i
I Start from vertex i
I Connect its m edges−→ vertices at distance 1 from vertex i
I Connect the m edges of vertices at distance 1,−→ . . .

I Continue in same fashion, up to distance k

Example for m = 2, k = 3 and i = 30



9/16

/ department of mathematics and computer science

Proper k -exploration trees

Construction of k -exploration tree of a vertex i
I Start from vertex i
I Connect its m edges−→ vertices at distance 1 from vertex i
I Connect the m edges of vertices at distance 1,−→ . . .

I Continue in same fashion, up to distance k

Example for m = 2, k = 3 and i = 30



9/16

/ department of mathematics and computer science

Proper k -exploration trees

Construction of k -exploration tree of a vertex i
I Start from vertex i
I Connect its m edges−→ vertices at distance 1 from vertex i
I Connect the m edges of vertices at distance 1,−→ . . .

I Continue in same fashion, up to distance k

Example for m = 2, k = 3 and i = 30



9/16

/ department of mathematics and computer science

Proper k -exploration trees

Construction of k -exploration tree of a vertex i
I Start from vertex i
I Connect its m edges−→ vertices at distance 1 from vertex i
I Connect the m edges of vertices at distance 1,−→ . . .

I Continue in same fashion, up to distance k

Example for m = 2, k = 3 and i = 30



9/16

/ department of mathematics and computer science

Proper k -exploration trees

Construction of k -exploration tree of a vertex i
I Start from vertex i
I Connect its m edges−→ vertices at distance 1 from vertex i
I Connect the m edges of vertices at distance 1,−→ . . .

I Continue in same fashion, up to distance k

Example for m = 2, k = 3 and i = 30



10/16

/ department of mathematics and computer science

Proper k -exploration trees (continued)

A k -exploration tree is proper when
I The k -exploration tree has no collisions
I No other vertex connects to a vertex in the tree
I All vertices of the tree are in [2t ]\[t ]

Example for m = 2, k = 3 and i = 30



10/16

/ department of mathematics and computer science

Proper k -exploration trees (continued)

A k -exploration tree is proper when
I The k -exploration tree has no collisions
I No other vertex connects to a vertex in the tree
I All vertices of the tree are in [2t ]\[t ]

Example for m = 2, k = 3 and i = 30



10/16

/ department of mathematics and computer science

Proper k -exploration trees (continued)

A k -exploration tree is proper when
I The k -exploration tree has no collisions
I No other vertex connects to a vertex in the tree
I All vertices of the tree are in [2t ]\[t ]

Example for m = 2, k = 3 and i = 30



10/16

/ department of mathematics and computer science

Proper k -exploration trees (continued)

A k -exploration tree is proper when
I The k -exploration tree has no collisions
I No other vertex connects to a vertex in the tree
I All vertices of the tree are in [2t ]\[t ]

Example for m = 2, k = 3 and i = 30



11/16

/ department of mathematics and computer science

Number of proper k -exploration trees

Let
Zk (2t) = # proper k -exploration trees at time 2t

Then
P [diam(2t) < k ] ≤ P [Zk (2t) = 0]

Using Chebychev inequality gives

P [Zk (2t) = 0] ≤
Var [Zk (2t)]

E [Zk (2t)]
2

?
−→ 0

We need

E [Zk (2t)] −→∞ and Var [Zk (2t)]� E [Zk (2t)]
2
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E [Zk (2t)] −→∞

Let

BT = “no other vertex connects to a vertex in the tree T ”

Then

E [Zk (2t)] = E

 ∑
T possible

I{T ⊆ PAm,δ(2t) and T is proper}


=

∑
T possible

P [T ⊆ PAm,δ(2t) and T is proper]

=

∑
T possible

P [T ⊆ PAm,δ(2t)] · P [BT |T ⊆ PAm,δ(2t)]
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E [Zk (2t)] −→∞ (continued)

E [Zk (2t)] =
∑

T possible

P [T ⊆ PAm,δ(2t)] · P [BT |T ⊆ PAm,δ(2t)]

&

(
t
|T |

)|T | (1
t

)|T |−1 (
1−
|T |

t

)mt

∼ t
(

1
(log t)ε

)(log t)ε

e−m(log t)ε

−→∞
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Var [Zk (2t)]� E [Zk (2t)]
2

Study covariance of two different possible trees being formed in the
graph and being proper

Take exact look at probabilities involved

Conclusion

Var [Zk (2t)] ≤ c
(log t)2

t
E [Zk (2t)]

2
+ E [Zk (2t)]� E [Zk (2t)]

2
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log log lowerbound for τ > 2

Theorem
Consider preferential attachment with m ≥ 2 and δ > −m (i.e. τ > 2)

Let k = ε
logm log log t , with 0 < ε < 1

Then, with high probability,

diam(2t) ≥ k

Proof

P[diam(2t) ≥ k ] ≥ 1− P [Zk (2t) = 0]

≥ 1−
Var [Zk (2t)]

E [Zk (2t)]
2

−→ 1
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Conclusion

Small world property holds in preferential attachment model

Future research
I Better bounds on distances
I Distances in other extended PA models
I Processes on random graphs


