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Introduction

There are many complex real-world networks, e.g.,
I Social networks (friendships, business relationships, sexual

contacts, . . . );
I Information networks (World Wide Web, citations, . . . );
I Technological networks (Internet, airline routes, . . . );
I Biological networks (protein interactions, neural networks,. . . ).

Sexual network Colorado
Springs, USA
(Potterat, et al., ’02)
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Small part of the Internet
(http://www.fractalus.com/

steve/stuff/ipmap/)
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Yeast protein interaction
network
(Jeong, et al., ’01)
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Properties of complex networks

Power-law behavior
Number of vertices with degree k is proportional to k−τ .

Small worlds
Distances in the network are small
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Ising model

Ising model: paradigm model in statistical physics for cooperative
behavior.

When studied on complex networks it can model for example opinion
spreading in society.

What are effects of structure of complex networks on behavior of Ising
model?
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Power-law random graphs

In the configuration model a graph Gn = (Vn = [n], En) is constructed as
follows.

I Let D have a certain distribution (the degree distribution);
I Assign Di half-edges to each vertex i ∈ [n], where Di are i.i.d. like D

(Add one half-edge to last vertex when the total number of
half-edges is odd);

I Attach first half-edge to another half-edge uniformly at random;
I Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

P[D ≥ k ] ≤ ck−(τ−1), τ > 1.
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Local structure configuration model for τ > 2

Start from random vertex i which has degree Di .

Look at neighbors of vertex i , probability such a neighbor has degree
k + 1 is approximately,

(k + 1)
∑

j∈[n] 1{Dj=k+1}

/n

∑
j∈[n] Dj

/n
−→

(k + 1)P[D = k + 1]
E[D ]

, for τ > 2.

Let K have distribution (the forward degree distribution),

P[K = k ] =
(k + 1)P[D = k + 1]

E[D ]
.

Locally tree-like structure: a branching process with offspring D in first
generation and K in further generations. Also, uniformly sparse.
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Definition of the Ising model

On a graph Gn , the ferromagnetic Ising model is given by the following
Boltzmann distributions over σ ∈ {−1,+1}n ,

µ(σ ) =
1

Zn(β,B )
exp

β ∑
(i ,j )∈En

σiσj + B
∑
i∈[n]

σi

 ,
where

I β ≥ 0 is the inverse temperature;
I B is the external magnetic field;
I Zn(β,B ) is a normalization factor (the partition function), i.e.,

Zn(β,B ) =
∑

σ∈{−1,1}n

exp

β ∑
(i ,j )∈En

σiσj + B
∑
i∈[n]

σi

 .
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Critical temperature

Define the magnetization on Gn as

mn(β,B ) =
1
n

n∑
i=1

〈
σi
〉
µ
.

Then, the spontaneous magnetization,

m(β,0+) = lim
B↓0

lim
n→∞

mn(β,B )
{
= 0, β < βc;

> 0, β > βc .

The critical inverse temperature βc is given by

E[K ](tanhβc) = 1.

Note that, for τ ∈ (2,3), we have E[K ] = ∞, so that βc = 0.
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Pressure in thermodynamic limit (E[K ] <∞)

Theorem (Dembo, Montanari, ’08)
For a locally tree-like and uniformly sparse graph sequence {Gn}n≥1 with
E[K ] <∞, the pressure per particle,

ψn(β,B ) =
1
n

log Zn(β,B ),

converges, for n →∞, to

ϕh (β,B ) ≡
E[D ]

2
log cosh(β)−

E[D ]
2

E[ log(1+ tanh(β) tanh(h1) tanh(h2))]

+ E

[
log

(
eB

D∏
i=1

{
1+ tanh(β) tanh(hi )

}
+e−B

D∏
i=1

{
1− tanh(β) tanh(hi )

})]
.
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Pressure in thermodynamic limit (E[D ] <∞)

Theorem (DGvdH, ’10)
Let τ > 2. Then, in the configuration model, the pressure per particle,

ψn(β,B ) =
1
n

log Zn(β,B ),

converges almost surely, for n →∞, to

ϕh (β,B ) ≡
E[D ]

2
log cosh(β)−

E[D ]
2

E[ log(1+ tanh(β) tanh(h1) tanh(h2))]

+ E

[
log

(
eB

D∏
i=1

{
1+ tanh(β) tanh(hi )

}
+e−B

D∏
i=1

{
1− tanh(β) tanh(hi )

})]
.
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Tree recursion

Proposition
Let Kt be i.i.d. like K and B > 0. Then, the recursion

h (t+1) d
= B +

Kt∑
i=1

atanh(tanh(β) tanh(h (t)
i )),

has a unique fixed point h ∗β .

Interpretation: the effective field of a vertex in a tree expressed in that of
its neighbors.

Uniqueness shown by showing that effect of boundary conditions on
generation t vanishes for t →∞.

This is done using monotonicity in β and B and concavity in B of the
magnetization in the ferromagnetic Ising model.
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Outline of the proof

lim
n→∞

ψn(β,B )

= lim
ε↓0

lim
n→∞

[
ψn(0,B )+

∫ ε

0

∂

∂β ′
ψn(β

′,B )dβ ′ +
∫ β

ε

∂

∂β ′
ψn(β

′,B )dβ ′
]

= ϕh (0,B )+ 0+ lim
ε↓0

∫ β

ε

∂

∂β ′
ϕ(β ′,B )dβ ′

= ϕh (β,B ).
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Internal energy

∂

∂β
ψn(β,B ) =

1
n

∑
(i ,j )∈En

〈
σiσj

〉
µ
=
|En |

n

∑
(i ,j )∈En

〈
σiσj

〉
µ

|En |

−→
E[D ]

2
E
[〈
σiσj

〉
µ

]
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Internal energy

∂

∂β
ψn(β,B ) =

1
n

∑
(i ,j )∈En

〈
σiσj

〉
µ
=
|En |

n

∑
(i ,j )∈En

〈
σiσj

〉
µ

|En |

−→
E[D ]

2
E
[〈
σiσj

〉
µ

]

E[D ]
2

E
[〈
σiσj

〉
µ

]
−→

E[D ]
2

E
[〈
σiσj

〉
e

]
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Derivative of ϕ

∂

∂β
ϕh∗β (β,B ) =

E[D ]
2

E
[〈
σiσj

〉
e

]
.

ϕh (β,B ) =
E[D ]

2
log cosh(β)−

E[D ]
2

E[ log(1+ tanh(β) tanh(h1) tanh(h2))]

+ E

[
log

(
eB

D∏
i=1

{
1+ tanh(β) tanh(hi )

}
+ e−B

D∏
i=1

{
1− tanh(β) tanh(hi )

})]
.

I Show that we can ignore dependence of h ∗β on β;
(Interpolation techniques. Split analysis into two parts, one for
small degrees and one for large degrees)

I Compute the derivative with assuming β fixed in h ∗β .
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Thermodynamic quantities

Corollary
Let τ > 2. Then, in the configuration model, a.s.:
The magnetization is given by

m(β,B ) ≡ lim
n→∞

mn(β,B ) =
∂

∂B
ϕh∗(β,B ) = E

[〈
σ0
〉
νL+1

]
.

The susceptibility is given by

χ(β,B ) ≡ lim
n→∞

∂Mn(β,B )
∂B

=
∂2

∂B 2
ϕh∗(β,B ).
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Distances in power-law random graphs

Let Hn be the graph distance between two uniformly chosen connected
vertices in the configuration model. Then:

I For τ > 3 and E[K ] > 1 (vdH, Hooghiemstra, Van Mieghem, ’05),

Hn ∼ log n,

I For τ ∈ (2,3) (vdH, Hooghiemstra, Znamenski, ’07),

Hn ∼ log log n;

For τ > 3 and τ ∈ (2,3) similar results hold for the diameter of linear
preferential attachment models (D, vdH, Hooghiemstra, ’10).
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Critical exponents

Predictions by physicists (e.g. Leone, Vázquez, Vespignani, Zecchina,
’02).

Critical behavior of magnetization m, and susceptibility χ.

m(β,0+), β ↓ βc m(βc ,B ),B ↓ 0 χ(β,0+), β ↓ βc

τ > 5 ∼ (β − βc)
1/2

∼ B 1/3
∼ (β − βc)

−1

τ ∈ (3,5) ∼ (β − βc)
1/(τ−3)

∼ B 1/(τ−2)

τ ∈ (2,3) ∼ (β − βc)
1/(3−τ)

∼ B 1
∼ (β − βc)

1
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