## Ising models on power-law random graphs

Sander Dommers
Joint work with:
Cristian Giardinà Remco van der Hofstad

YEP VII: Probability, random trees and algorithms March 10, 2010

## Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).


Sexual network Colorado Springs, USA (Potterat, et al., '02)

## Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).


Small part of the Internet (http://www.fractalus.com/ steve/stuff/ipmap/)

## Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).


> Yeast protein interaction network (Jeong, et al., '01)

## Properties of complex networks

## Power-law behavior

Number of vertices with degree $k$ is proportional to $k^{-\tau}$.


Barabâsi, Linked, '02

## Small worlds

Distances in the network are small

## Ising model

Ising model: paradigm model in statistical physics for cooperative behavior.

When studied on complex networks it can model for example opinion spreading in society.

What are effects of structure of complex networks on behavior of Ising model?

## Power-law random graphs

In the configuration model a graph $G_{n}=\left(V_{n}=[n], E_{n}\right)$ is constructed as follows.

- Let $D$ have a certain distribution (the degree distribution);
- Assign $D_{i}$ half-edges to each vertex $i \in[n]$, where $D_{i}$ are i.i.d. like $D$ (Add one half-edge to last vertex when the total number of half-edges is odd);
- Attach first half-edge to another half-edge uniformly at random;
- Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

$$
\mathbb{P}[D \geq k] \leq c k^{-(\tau-1)}, \quad \tau>1 .
$$

## Local structure configuration model for $\tau>2$

Start from random vertex $i$ which has degree $D_{i}$.

Look at neighbors of vertex $i$, probability such a neighbor has degree $k+1$ is approximately,

$$
\frac{(k+1) \sum_{j \in[n]} \mathbb{1}_{\left\{D_{j}=k+1\right\}}}{\sum_{j \in[n]} D_{j}}
$$

## Local structure configuration model for $\tau>2$

Start from random vertex $i$ which has degree $D_{i}$.
Look at neighbors of vertex $i$, probability such a neighbor has degree $k+1$ is approximately,

$$
\frac{(k+1) \sum_{j \in[n]} \mathbb{1}_{\left\{D_{j}=k+1\right\}} / n}{\sum_{j \in[n]} D_{j} / n} \longrightarrow \frac{(k+1) \mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \quad \text { for } \tau>2
$$

## Local structure configuration model for $\tau>2$

Start from random vertex $i$ which has degree $D_{i}$.
Look at neighbors of vertex $i$, probability such a neighbor has degree $k+1$ is approximately,

$$
\frac{(k+1) \sum_{j \in[n]} \mathbb{1}_{\left\{D_{j}=k+1\right\}} / n}{\sum_{j \in[n]} D_{j} / n} \longrightarrow \frac{(k+1) \mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \quad \text { for } \tau>2 .
$$

Let $K$ have distribution (the forward degree distribution),

$$
\mathbb{P}[K=k]=\frac{(k+1) \mathbb{P}[D=k+1]}{\mathbb{E}[D]}
$$

Locally tree-like structure: a branching process with offspring $D$ in first generation and $K$ in further generations. Also, uniformly sparse.

## Definition of the Ising model

On a graph $G_{n}$, the ferromagnetic Ising model is given by the following Boltzmann distributions over $\sigma \in\{-1,+1\}^{n}$,

$$
\mu(\sigma)=\frac{1}{Z_{n}(\beta, B)} \exp \left\{\beta \sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}+B \sum_{i \in[n]} \sigma_{i}\right\},
$$

where

- $\beta \geq 0$ is the inverse temperature;
- $B$ is the external magnetic field;
- $Z_{n}(\beta, B)$ is a normalization factor (the partition function), i.e.,

$$
Z_{n}(\beta, B)=\sum_{\sigma \in\{-1,1\}^{n}} \exp \left\{\beta \sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}+B \sum_{i \in[n]} \sigma_{i}\right\} .
$$

## Critical temperature

Define the magnetization on $G_{n}$ as

$$
m_{n}(\beta, B)=\frac{1}{n} \sum_{i=1}^{n}\left\langle\sigma_{i}\right\rangle_{\mu} .
$$

Then, the spontaneous magnetization,

$$
m(\beta, 0+)=\lim _{B \downarrow 0} \lim _{n \rightarrow \infty} m_{n}(\beta, B) \begin{cases}=0, & \beta<\beta_{c} \\ >0, & \beta>\beta_{c}\end{cases}
$$

The critical inverse temperature $\beta_{c}$ is given by

$$
\mathbb{E}[K]\left(\tanh \beta_{c}\right)=1
$$

Note that, for $\tau \in(2,3)$, we have $\mathbb{E}[K]=\infty$, so that $\beta_{c}=0$.

## Pressure in thermodynamic limit $(\mathbb{E}[K]<\infty)$

Theorem (Dembo, Montanari, '08)
For a locally tree-like and uniformly sparse graph sequence $\left\{G_{n}\right\}_{n \geq 1}$ with $\mathbb{E}[K]<\infty$, the pressure per particle,

$$
\psi_{n}(\beta, B)=\frac{1}{n} \log Z_{n}(\beta, B),
$$

converges, for $n \rightarrow \infty$, to
$\varphi_{h}(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh (\beta)-\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\log \left(1+\tanh (\beta) \tanh \left(h_{1}\right) \tanh \left(h_{2}\right)\right)\right]$

$$
+\mathbb{E}\left[\operatorname { l o g } \left(e^{B} \prod_{i=1}^{D}\left\{1+\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right.\right.
$$

$$
\left.\left.+\mathrm{e}^{-B} \prod_{i=1}^{D}\left\{1-\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right)\right] .
$$

## Pressure in thermodynamic limit $(\mathbb{E}[D]<\infty)$

## Theorem (DGvdH, '10)

Let $\tau>2$. Then, in the configuration model, the pressure per particle,

$$
\psi_{n}(\beta, B)=\frac{1}{n} \log Z_{n}(\beta, B)
$$

converges almost surely, for $n \rightarrow \infty$, to
$\varphi_{h}(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh (\beta)-\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\log \left(1+\tanh (\beta) \tanh \left(h_{1}\right) \tanh \left(h_{2}\right)\right)\right]$

$$
+\mathbb{E}\left[\operatorname { l o g } \left(e^{B} \prod_{i=1}^{D}\left\{1+\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right.\right.
$$

$$
\left.\left.+\mathrm{e}^{-B} \prod_{i=1}^{D}\left\{1-\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right)\right] .
$$

## Tree recursion

## Proposition

Let $K_{t}$ be i.i.d. like $K$ and $B>0$. Then, the recursion

$$
h^{(t+1)} \stackrel{d}{=} B+\sum_{i=1}^{K_{t}} \operatorname{atanh}\left(\tanh (\beta) \tanh \left(h_{i}^{(t)}\right)\right)
$$

has a unique fixed point $h_{\beta}^{*}$.
Interpretation: the effective field of a vertex in a tree expressed in that of its neighbors.

Uniqueness shown by showing that effect of boundary conditions on generation $t$ vanishes for $t \rightarrow \infty$.

This is done using monotonicity in $\beta$ and $B$ and concavity in $B$ of the magnetization in the ferromagnetic Ising model.

## Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, \boldsymbol{B})+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

## Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, B)+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

## Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, \boldsymbol{B})+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

## Outline of the proof

$\lim _{n \rightarrow \infty} \psi_{n}(\beta, B)$

$$
\begin{aligned}
& =\lim _{\varepsilon \downarrow 0} \lim _{n \rightarrow \infty}\left[\psi_{n}(0, B)+\int_{0}^{\varepsilon} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}+\int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \psi_{n}\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime}\right] \\
& =\varphi_{h}(0, B)+0+\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta^{\prime}} \varphi\left(\beta^{\prime}, \boldsymbol{B}\right) \mathrm{d} \beta^{\prime} \\
& =\varphi_{h}(\beta, \boldsymbol{B})
\end{aligned}
$$

## Internal energy

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \psi_{n}(\beta, B) & =\frac{1}{n} \sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}=\frac{\left|E_{n}\right|}{n} \frac{\sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}}{\left|E_{n}\right|} \\
& \longrightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}\right]
\end{aligned}
$$



## Internal energy

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \psi_{n}(\beta, B) & =\frac{1}{n} \sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}=\frac{\left|E_{n}\right|}{n} \frac{\sum_{(i, j) \in E_{n}}\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}}{\left|E_{n}\right|} \\
& \longrightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}\right]
\end{aligned}
$$



$$
\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{\mu}\right] \rightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{e}\right]
$$

## Derivative of $\varphi$

$$
\frac{\partial}{\partial \beta} \varphi_{h_{\beta}^{\hbar}}(\beta, B)=\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle\sigma_{i} \sigma_{j}\right\rangle_{e}\right] .
$$

$\varphi_{h}(\beta, B)=\frac{\mathbb{E}[D]}{2} \log \cosh (\beta)-\frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\log \left(1+\tanh (\beta) \tanh \left(h_{1}\right) \tanh \left(h_{2}\right)\right)\right]$
$+\mathbb{E}\left[\log \left(e^{B} \prod_{i=1}^{D}\left\{1+\tanh (\beta) \tanh \left(h_{i}\right)\right\}+e^{-B} \prod_{i=1}^{D}\left\{1-\tanh (\beta) \tanh \left(h_{i}\right)\right\}\right)\right]$

- Show that we can ignore dependence of $h_{\beta}^{*}$ on $\beta$; (Interpolation techniques. Split analysis into two parts, one for small degrees and one for large degrees)
- Compute the derivative with assuming $\beta$ fixed in $h_{\beta}^{*}$.


## Thermodynamic quantities

## Corollary

Let $\tau>2$. Then, in the configuration model, a.s.:
The magnetization is given by

$$
m(\beta, B) \equiv \lim _{n \rightarrow \infty} m_{n}(\beta, B)=\frac{\partial}{\partial B} \varphi_{h^{*}}(\beta, B)=\mathbb{E}\left[\left\langle\sigma_{0}\right\rangle_{\nu_{L+1}}\right]
$$



The susceptibility is given by

$$
\chi(\beta, B) \equiv \lim _{n \rightarrow \infty} \frac{\partial M_{n}(\beta, B)}{\partial B}=\frac{\partial^{2}}{\partial B^{2}} \varphi_{h^{*}}(\beta, B) .
$$

## Distances in power-law random graphs

Let $H_{n}$ be the graph distance between two uniformly chosen connected vertices in the configuration model. Then:

- For $\tau>3$ and $\mathbb{E}[K]>1$ (vdH, Hooghiemstra, Van Mieghem, '05),

$$
H_{n} \sim \log n,
$$

- For $\tau \in(2,3)$ (vdH, Hooghiemstra, Znamenski, '07),

$$
H_{n} \sim \log \log n
$$

## Distances in power-law random graphs

Let $H_{n}$ be the graph distance between two uniformly chosen connected vertices in the configuration model. Then:

- For $\tau>3$ and $\mathbb{E}[K]>1$ (vdH, Hooghiemstra, Van Mieghem, '05),

$$
H_{n} \sim \log n
$$

- For $\tau \in(2,3)$ (vdH, Hooghiemstra, Znamenski, '07),

$$
H_{n} \sim \log \log n
$$

For $\tau>3$ and $\tau \in(2,3)$ similar results hold for the diameter of linear preferential attachment models (D, vdH, Hooghiemstra, '10).

## Critical exponents

Predictions by physicists (e.g. Leone, Vázquez, Vespignani, Zecchina, '02).

Critical behavior of magnetization $m$, and susceptibility $\chi$.

|  | $m\left(\beta, 0^{+}\right), \beta \downarrow \beta_{c}$ | $m\left(\beta_{c}, B\right), B \downarrow 0$ | $\chi\left(\beta, 0^{+}\right), \beta \downarrow \beta_{c}$ |
| :--- | :---: | :---: | :---: |
| $\tau>5$ | $\sim\left(\beta-\beta_{c}\right)^{1 / 2}$ | $\sim B^{1 / 3}$ | $\sim\left(\beta-\beta_{c}\right)^{-1}$ |
| $\tau \in(3,5)$ | $\sim\left(\beta-\beta_{c}\right)^{1 /(\tau-3)}$ | $\sim B^{1 /(\tau-2)}$ |  |
| $\tau \in(2,3)$ | $\sim\left(\beta-\beta_{c}\right)^{1 /(3-\tau)}$ | $\sim B^{1}$ | $\sim\left(\beta-\beta_{c}\right)^{1}$ |

