RUHR
UNIVERSITAT
BOCHUM

Metastability in the

reversible inclusion process

Sander Dommers

Work in progress jointly with

Alessandra Bianchi and Cristian Giardina




5.[3:1 re

Inclusion process

Interacting particle system with N particles

Vertex set S with |S| < oo

Configuration 1 = (1x)xes € {0, ..., N}°, 1, = #particles on x € S
Underlying random walk on S with transition rates r(x, y)

Inclusion process is continuous time Markov process with generator

> mxldn +my)r( ) [Fr™) = £(n)]
x,y€S
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Particle jump rates

ne(dn + ny)r(z,y)

xr

Particle jump rates can be split into

Nx dy r(x,y) independent random walkers diffusion
Nx My r(x,y) attractive interaction inclusion

Comparison with other processes:

nx (1 —ny) r(x,y) exclusion process
g(nx) r(x,y) Zero range process
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Motivation

Symmetric IP on Z introduced as dual of Brownian momentum process
Giardina, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process

Interesting dynamical behavior: condensation / metastability
In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013
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Motivation

Symmetric IP on Z introduced as dual of Brownian momentum process
Giardina, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process

Interesting dynamical behavior: condensation / metastability
In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013

Can we analyze this using the martingale approach?
Beltran, Landim, 2010

Successfully used for reversible zero range process Beltran, Landim, 2012

Can we generalize results to the reversible IP?
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Reversible inclusion process

Random walk r(-,-) reversible w.r.t. some measure m(-):

m(x)r(x,y) = m(y)r(y,x)  Vx,y €S

Normalized such that

=1
e )
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Reversible inclusion process

Random walk r(-,-) reversible w.r.t. some measure m(-):
m(x)r(x,y) = m(y)r(y,x) ~ Vx,y €S
Normalized such that

=1
e )

Then, also inclusion process reversible w.r.t. probability measure

pn(n) = 5 [T )™ ()

x€ES

where Z) is a normalization constant and

M(dn + k)

M = )
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Condensation
Let S, = {x € S: m(x) = 1} and N the configuration 1 with n, = N

Proposition
Suppose that dylog N — 0 as N — oo. Then

: XNy
NlinooMN(n ) ’5*‘ Vx €S,
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Condensation

Let S, = {x € S: m(x) = 1} and N the configuration 1 with n, = N

Proposition
Suppose that dylog N — 0 as N — oo. Then

: XNy
Nlinooulv(n ) ’5*‘ Vx €S,

Assumption on dpy such that

B 1 r(N—l—dN)_ 1 o
= ) (V=1 _I'(dN+1)ed e N(1 4+ 0(1)) = 1

(using Stirling’s approximation)
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Movement of the condensate

Consider the following process on S, U {0}:

Xn(t) = D x 1y (-n

XES,

Theorem (Bianchi, D., Giardina, 2016)

Suppose that dylog N — 0 as N — oo and that 1,(0) = N for some
y € S4. Then

Xn(t/dy) converges weakly to x(t) as N — oo
where x(t) is a Markov process on S, with x(0) = y and transition rates

p(x,y) = r(x,y)
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Example
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Zero range process Beltran, Landim, 2012

Underlying reversible random walk r(-,-)

Transition rates for a particle to move from x to y

( I )ar(x,y), a>1

77X_1

Condensate consists of at least N — ¢y particles, {n = o(N)
At timescale tN°*1 the condensate moves from x € S, to y € S, at rate

p(x,y) = Cacap(x,y)

where cap(x, y) is the capacity of the underlying random walk between
x and y.
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Proof strategy

If r(-,-) is symmetric (S = S,), cite Grosskinsky, Redig, Vafayi, 2013
They analyze directly rescaled generator

Otherwise, martingale approach Beltran, Landim, 2010
Potential theory combined with martingale arguments

Successfully applied to zero range process Beltran, Landim, 2012
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Martingale approach Beltran, Landim, 20105!:‘“*

To prove the theorem we need to check the following three hypotheses:

(HO)  limnosoe o pn (7N, 7N) = plx,y) = r(x,y)

where py (7N, 1n7°N) rate to go from 7N to N
in original process

(H1) All states in each metastable set are visited before exiting.

MN(W:E}’ES»UTU:N):O Vx €S,

H2 lim
(H2) o m, pn (V)
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To prove the theorem we need to check the following three hypotheses:

(HO)  limnosoe o pn (7N, 7N) = plx,y) = r(x,y)

where py (7N, 1n7°N) rate to go from 7N to N
in original process

(H1) All states in each metastable set are visited before exiting.  Trivial

MN(W:E}’ES»UTU:N):O Vx €S,

H2 lim
(H2) o m, pn (V)
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Martingale approach Beltran, Landim, 20105!:‘“*

To prove the theorem we need to check the following three hypotheses:

(HO)  limnosoe o pn (7N, 7N) = plx,y) = r(x,y)

where py (7N, 1n7°N) rate to go from 7N to N
in original process

(H1) All states in each metastable set are visited before exiting.  Trivial

MN(W:E}’ES»UTU:N)

=0 VxeS Eas
pn (M) ) Y

(2) fim
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Capacities

Capacity satisfy
Capy(A,B) =inf{Dn(F): F(n) =1Vne A F({)=0Vne B}

where Dy (F) is the Dirichlet form

ZMN > mxldn + ) r(x )IF () = F(n)?

x,y€S
Lemma (Beltran, Landim, 2010)
v (M) o (N )

:%{CapN({T/X’N}, U {nZ’N})vLCapN({TZy’N}’ U {UZ’N})

z€S5,,z#x z€S84,z7y

—Capy (MM U M)}

ZE€S54,zF#X,y

Sander Dommers — Ruhr-Universitit Bochum



Capacities in inclusion process

Proposition
Let S} C S, and S? = S, \ S}. Then, for dylog N — 0,

N—o0
xeSt xeSt yeS2

Combining this proposition and the previous lemma indeed gives

1
Jim pn( N, ) = r(x,y)
N
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Lower bound on Dirichlet form

Fix a function F such that F(°V) =1V x € S! and
Fi’N)y=0Vy e S2

Sufficient to show that

Dn(F Z Z r(x,y)(1+o(1))

XES1 y€S?2
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Lower bound on Dirichlet form

Fix a function F such that F(°V) =1V x € S! and
F(pNy=0Vy e 52

Sufficient to show that
Dn(F Z > r(xy)(1+0(1))
X651y652

For lower bound we can throw away terms in the Dirichlet form

= nln) X mldn + m)r(x V() — FO)P
n

X, y€S

>3 S ry) S (el +n)IFGrY) — Fo)P

xeS} yeS? nx+ny=N

If condensates jumps from x to y all particles will move from x to y
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Lower bound on Dirichlet form (continued)

Fix x € S},y € S2. If ny + 1, = N it is sufficient to know how many
particles are on x

> un(mnx(dn + ) [F(7) = F(n)]?

nx+ny=N
wy (k)wn (N — k)
Zn

k(dy + N — K)[G(k — 1) — G(k)]?
1

where G(k) = F(nx = k,n, = N — k) and where we used
m(x) = m(y) = 1 since x € S}, y € S2.
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Lower bound on wy(k)

Recall wi(k) = (dn + k)

KIT(dy)
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Lower bound on Dirichlet form (continued)

We can now bound

N
ZWN(k)WZNN(N = k) j(d + N — K)[G(k — 1) — G(K)]
k=1

N

> Gk —1) = Gk

k=1

Since G(N) =1 and G(0) = 0 we can use resistance of linear chain to
bound

Z[G ~1) = Gk >1/N

because the minimizer of this over all such G is G(k) = k/N
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Lower bound on Dirichlet form (conclusion)

So far we proved that

>3 Y Ax gy

x€SL yes2
We know that

M (11 o(1))

Zn = [Selwn(N)(1 +o(1)) =

—DN(F) > Z > r(xy) 1+ o(1))
1S

xeSl yeSs?

Taking infimum and limit on both sides indeed proves that

(U oy UWN}) ’5‘ S5 rxy)

xeS1 xeSt yeS?
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Upper bound on Dirichlet form O

Need to construct test function F(7)
Good guess inside tubes 7, + 1, = N: F(n) =~ n/N

In fact better to choose smooth monotone function ¢(t),t € [0, 1] with

(t)y=1—¢(1—t)Vte]0,1] o(t)
t)y=0ift<e \
1

¢
9

and set F(n) = ¢ (nx/N)

For general 1 we set

F(n) = ¢(nx/N)

xeSt
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Observations for upper bound on Dy(F)

Dn(F) = %Zuw(n) > mxldn +ny)r(x )IF () = F(n)?
n x,y€S

For eN <1y < (1 —¢&)N we can use wy(nx)nx ~ dy

By construction particles moving from x € S! to y € S? give correct
contribution

If numbers of particles on sites in Si don’t change, F is constant
If particles move between sites in S!, F is also constant
Unlikely to be in config. with particles on three sites / sites not in S,

Unlikely for a particle to escape from a tube
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Capacities in inclusion process (conclusion)

Combining the lower and upper bound indeed this proposition follows

Proposition
Let S C S, and S? = S, \ S}. Then, for dylog N — 0,

Nlinoo —CapN( U {r"y, U {Uy’N}> |5 | Z Z r(x,y)

xeS} x€S} yes?

And the transition rates indeed satisfy

1
lim ——pn(N, " N) = r(x,y)

N—o0 dN

proving the theorem
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Open problems / future work

What if vertices in S, are not connected?
Longer timescale(s)?

Can we compute relaxation time?

Can we compute thermodynamic limit?
Zero-range process: Armendariz, Grosskinsky, Loulakis, 2015

Can we say something about the formation of the condensate?
Studied for SIP in Grosskinsky, Redig, Vafayi, 2013

Can we obtain similar results for non-reversible dynamics?
e.g. (T)ASIP on Z/L7Z. Heuristics: Cao, Chleboun, Grosskinsky, 2014
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