RUHR UNIVERSITÄT BOCHUM

Metastability in the reversible inclusion process

Sander Dommers

Work in progress jointly with
Alessandra Bianchi and Cristian Giardinà

Inclusion process

Interacting particle system with N particles
Vertex set S with $|S|<\infty$
Configuration $\eta=\left(\eta_{x}\right)_{x \in S} \in\{0, \ldots, N\}^{S}, \eta_{x}=\#$ particles on $x \in S$
Underlying random walk on S with transition rates $r(x, y)$
Inclusion process is continuous time Markov process with generator

$$
\mathcal{L} f(\eta)=\sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[f\left(\eta^{x, y}\right)-f(\eta)\right]
$$

Particle jump rates

Particle jump rates can be split into
$\eta_{x} d_{N} r(x, y)$ independent random walkers diffusion $\eta_{x} \eta_{y} r(x, y)$ attractive interaction inclusion

Comparison with other processes:

$$
\begin{array}{ll}
\eta_{x}\left(1-\eta_{y}\right) r(x, y) & \text { exclusion process } \\
g\left(\eta_{x}\right) r(x, y) & \text { zero range process }
\end{array}
$$

Motivation

Symmetric IP on \mathbb{Z} introduced as dual of Brownian momentum process Giardinà, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process
Interesting dynamical behavior: condensation / metastability In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013

Motivation

Symmetric IP on \mathbb{Z} introduced as dual of Brownian momentum process Giardinà, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process
Interesting dynamical behavior: condensation / metastability In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013

Can we analyze this using the martingale approach?
Beltrán, Landim, 2010

Successfully used for reversible zero range process Beltrán, Landim, 2012
Can we generalize results to the reversible IP?

Reversible inclusion process

Random walk $r(\cdot, \cdot)$ reversible w.r.t. some measure $m(\cdot)$:

$$
m(x) r(x, y)=m(y) r(y, x) \quad \forall x, y \in S
$$

Normalized such that

$$
\max _{x \in S} m(x)=1
$$

Reversible inclusion process

Random walk $r(\cdot, \cdot)$ reversible w.r.t. some measure $m(\cdot)$:

$$
m(x) r(x, y)=m(y) r(y, x) \quad \forall x, y \in S
$$

Normalized such that

$$
\max _{x \in S} m(x)=1
$$

Then, also inclusion process reversible w.r.t. probability measure

$$
\mu_{N}(\eta)=\frac{1}{Z_{N}} \prod_{x \in S} m(x)^{\eta_{x}} w_{N}\left(\eta_{x}\right)
$$

where Z_{N} is a normalization constant and

$$
w_{N}(k)=\frac{\Gamma\left(d_{N}+k\right)}{k!\Gamma\left(d_{N}\right)}
$$

Condensation

Let $S_{\star}=\{x \in S: m(x)=1\}$ and $\eta^{x, N}$ the configuration η with $\eta_{x}=N$

Proposition

Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$. Then

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\eta^{x, N}\right)=\frac{1}{\left|S_{\star}\right|} \quad \forall x \in S_{\star}
$$

Condensation

Let $S_{\star}=\{x \in S: m(x)=1\}$ and $\eta^{x, N}$ the configuration η with $\eta_{x}=N$

Proposition

Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$. Then

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\eta^{x, N}\right)=\frac{1}{\left|S_{\star}\right|} \quad \forall x \in S_{\star}
$$

Assumption on d_{N} such that

$$
\frac{N}{d_{N}} w_{N}(N)=\frac{1}{d_{N} \Gamma\left(d_{N}\right)} \frac{\Gamma\left(N+d_{N}\right)}{(N-1)!}=\frac{1}{\Gamma\left(d_{N}+1\right)} e^{d_{N} \log N}(1+o(1)) \rightarrow 1
$$

(using Stirling's approximation)

Movement of the condensate

Consider the following process on $S_{\star} \cup\{0\}$:

$$
X_{N}(t)=\sum_{x \in S_{\star}} x \mathbb{1}_{\left\{\eta_{x}(t)=N\right\}}
$$

Theorem (Bianchi, D., Giardinà, 2016)

Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$ and that $\eta_{y}(0)=N$ for some $y \in S_{\star}$. Then

$$
X_{N}\left(t / d_{N}\right) \text { converges weakly to } x(t) \quad \text { as } N \rightarrow \infty
$$

where $x(t)$ is a Markov process on S_{\star} with $x(0)=y$ and transition rates

$$
p(x, y)=r(x, y)
$$

Example

5 frie
 RUB

Zero range process Beltrán, Landim, 2012

Underlying reversible random walk $r(\cdot, \cdot)$
Transition rates for a particle to move from x to y

$$
\left(\frac{\eta_{x}}{\eta_{x}-1}\right)^{\alpha} r(x, y), \quad \alpha>1
$$

Condensate consists of at least $N-\ell_{N}$ particles, $\ell_{N}=o(N)$
At timescale $t N^{\alpha+1}$ the condensate moves from $x \in S_{\star}$ to $y \in S_{\star}$ at rate

$$
p(x, y)=C_{\alpha} \operatorname{cap}(x, y)
$$

where $\operatorname{cap}(x, y)$ is the capacity of the underlying random walk between x and y.

Proof strategy

If $r(\cdot, \cdot)$ is symmetric $\left(S=S_{\star}\right)$, cite Grosskinsky, Redig, Vafayi, 2013
They analyze directly rescaled generator
Otherwise, martingale approach Beltrán, Landim, 2010
Potential theory combined with martingale arguments
Successfully applied to zero range process Beltrán, Landim, 2012

Martingale approach Beltrán, Landim, 2010

To prove the theorem we need to check the following three hypotheses:
(H0) $\quad \lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow p(x, y)=r(x, y)$ where $p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$ rate to go from $\eta^{x, N}$ to $\eta^{y, N}$ in original process
(H1) All states in each metastable set are visited before exiting.
(H2)

$$
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\eta: \nexists y \in S_{\star}: \eta_{y}=N\right)}{\mu_{N}\left(\eta^{x, N}\right)}=0 \quad \forall x \in S_{\star}
$$

Martingale approach Beltrán, Landim, 2010

RUB

To prove the theorem we need to check the following three hypotheses:
(H0) $\quad \lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow p(x, y)=r(x, y)$ where $p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$ rate to go from $\eta^{x, N}$ to $\eta^{y, N}$ in original process
(H1) All states in each metastable set are visited before exiting. Trivial
(H2)

$$
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\eta: \nexists y \in S_{\star}: \eta_{y}=N\right)}{\mu_{N}\left(\eta^{x, N}\right)}=0 \quad \forall x \in S_{\star}
$$

Martingale approach Beltrán, Landim, 2010

To prove the theorem we need to check the following three hypotheses:
(H0) $\quad \lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow p(x, y)=r(x, y)$ where $p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$ rate to go from $\eta^{x, N}$ to $\eta^{y, N}$ in original process
(H1) All states in each metastable set are visited before exiting. Trivial
(H2)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\eta: \nexists y \in S_{\star}: \eta_{y}=N\right)}{\mu_{N}\left(\eta^{x, N}\right)}=0 \quad \forall x \in S_{\star} \tag{Easy}
\end{equation*}
$$

Capacities

Capacity satisfy

$$
\operatorname{Cap}_{N}(A, B)=\inf \left\{D_{N}(F): F(\eta)=1 \forall \eta \in A, F(\xi)=0 \forall \eta \in B\right\}
$$

where $D_{N}(F)$ is the Dirichlet form

$$
D_{N}(F)=\frac{1}{2} \sum_{\eta} \mu_{N}(\eta) \sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2}
$$

Lemma (Beltrán, Landim, 2010)
$\mu_{N}\left(\eta^{x, N}\right) p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$

$$
\begin{gathered}
=\frac{1}{2}\left\{\operatorname{Cap}_{N}\left(\left\{\eta^{x, N}\right\}, \bigcup_{z \in S_{\star}, z \neq x}\left\{\eta^{z, N}\right\}\right)+\operatorname{Cap}_{N}\left(\left\{\eta^{y, N}\right\}, \bigcup_{z \in S_{\star}, z \neq y}\left\{\eta^{z, N}\right\}\right)\right. \\
\left.-\operatorname{Cap}_{N}\left(\left\{\eta^{x, N}, \eta^{y, N}\right\}, \bigcup_{z \in S_{\star}, z \neq x, y}\left\{\eta^{z, N}\right\}\right)\right\}
\end{gathered}
$$

Capacities in inclusion process

Proposition

Let $S_{\star}^{1} \subsetneq S_{\star}$ and $S_{\star}^{2}=S_{\star} \backslash S_{\star}^{1}$. Then, for $d_{N} \log N \rightarrow 0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{x \in S_{\star}^{1}}\left\{\eta^{x, N}\right\}, \bigcup_{y \in S_{\star}^{2}}\left\{\eta^{y, N}\right\}\right)=\frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)
$$

Combining this proposition and the previous lemma indeed gives

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow r(x, y)
$$

Lower bound on Dirichlet form

Fix a function F such that $F\left(\eta^{\chi, N}\right)=1 \forall x \in S_{\star}^{1}$ and
$F\left(\eta^{y, N}\right)=0 \forall y \in S_{\star}^{2}$
Sufficient to show that

$$
D_{N}(F) \geq d_{N} \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)(1+o(1))
$$

Lower bound on Dirichlet form

RUB

Fix a function F such that $F\left(\eta^{\chi, N}\right)=1 \forall x \in S_{\star}^{1}$ and
$F\left(\eta^{y, N}\right)=0 \forall y \in S_{\star}^{2}$
Sufficient to show that

$$
D_{N}(F) \geq d_{N} \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)(1+o(1))
$$

For lower bound we can throw away terms in the Dirichlet form

$$
\begin{aligned}
D_{N}(F) & =\frac{1}{2} \sum_{\eta} \mu_{N}(\eta) \sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& \geq \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y) \sum_{\eta_{x}+\eta_{y}=N} \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2}
\end{aligned}
$$

If condensates jumps from x to y all particles will move from x to y

Lower bound on Dirichlet form (continued)

RUB

Fix $x \in S_{\star}^{1}, y \in S_{\star}^{2}$. If $\eta_{x}+\eta_{y}=N$ it is sufficient to know how many particles are on x

$$
\begin{aligned}
\sum_{\eta_{x}+\eta_{y}=N} & \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& =\sum_{k=1}^{N} \frac{w_{N}(k) w_{N}(N-k)}{Z_{N}} k\left(d_{N}+N-k\right)[G(k-1)-G(k)]^{2}
\end{aligned}
$$

where $G(k)=F\left(\eta_{x}=k, \eta_{y}=N-k\right)$ and where we used $m(x)=m(y)=1$ since $x \in S_{\star}^{1}, y \in S_{\star}^{2}$.

Lower bound on $w_{N}(k)$

Recall

$$
\begin{aligned}
w_{N}(k) & =\frac{\Gamma\left(d_{N}+k\right)}{k!\Gamma\left(d_{N}\right)}=\prod_{\ell=1}^{k} \frac{\ell-1+d_{N}}{\ell} \\
& \geq d_{N} \prod_{\ell=2}^{k} \frac{\ell-1}{\ell}=\frac{d_{N}}{k}
\end{aligned}
$$

Hence

$$
w_{N}(k) k \geq d_{N} \quad \forall k \geq 1
$$

and

$$
w_{N}(k)\left(d_{N}+k\right) \geq d_{N} \quad \forall k \geq 0
$$

Lower bound on Dirichlet form (continued)

RUB

We can now bound

$$
\begin{aligned}
& \sum_{k=1}^{N} \frac{w_{N}(k) w_{N}(N-k)}{Z_{N}} k\left(d_{N}+N-k\right)[G(k-1)-G(k)]^{2} \\
& \quad \geq \frac{1}{Z_{N}} d_{N}^{2} \sum_{k=1}^{N}[G(k-1)-G(k)]^{2}
\end{aligned}
$$

Since $G(N)=1$ and $G(0)=0$ we can use resistance of linear chain to bound

$$
\sum_{k=1}^{N}[G(k-1)-G(k)]^{2} \geq 1 / N
$$

because the minimizer of this over all such G is $G(k)=k / N$

Lower bound on Dirichlet form (conclusion)

RUB

So far we proved that

We know that

$$
D_{N}(F) \geq \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y) \frac{1}{Z_{N}} d_{N}^{2} \frac{1}{N}
$$

$$
Z_{N}=\left|S_{\star}\right| w_{N}(N)(1+o(1))=\frac{d_{N}}{N}(1+o(1))
$$

Hence,

$$
\frac{1}{d_{N}} D_{N}(F) \geq \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)(1+o(1))
$$

Taking infimum and limit on both sides indeed proves that

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{x \in S_{\star}^{1}}\left\{\eta^{x, N}\right\}, \bigcup_{y \in S_{\star}^{2}}\left\{\eta^{y, N}\right\}\right) \geq \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)
$$

Upper bound on Dirichlet form

Need to construct test function $F(\eta)$
Good guess inside tubes $\eta_{x}+\eta_{y}=N: F(\eta) \approx \eta_{x} / N$
In fact better to choose smooth monotone function $\phi(t), t \in[0,1]$ with
$\phi(t)=1-\phi(1-t) \forall t \in[0,1]$
$\phi(t)=0$ if $t \leq \varepsilon$
and set $F(\eta)=\phi\left(\eta_{x} / N\right)$
For general η we set

$$
F(\eta)=\sum_{x \in S_{\star}^{1}} \phi\left(\eta_{x} / N\right)
$$

Observations for upper bound on $D_{N}(F)$

$$
D_{N}(F)=\frac{1}{2} \sum_{\eta} \mu_{N}(\eta) \sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2}
$$

For $\varepsilon N \leq \eta_{x} \leq(1-\varepsilon) N$ we can use $w_{N}\left(\eta_{x}\right) \eta_{x} \approx d_{N}$
By construction particles moving from $x \in S_{\star}^{1}$ to $y \in S_{\star}^{2}$ give correct contribution

If numbers of particles on sites in S_{\star}^{1} don't change, F is constant
If particles move between sites in S_{\star}^{1}, F is also constant
Unlikely to be in config. with particles on three sites / sites not in S_{\star}
Unlikely for a particle to escape from a tube

Capacities in inclusion process (conclusion)

RUB

Combining the lower and upper bound indeed this proposition follows
Proposition
Let $S_{\star}^{1} \subsetneq S_{\star}$ and $S_{\star}^{2}=S_{\star} \backslash S_{\star}^{1}$. Then, for $d_{N} \log N \rightarrow 0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{x \in S_{\star}^{1}}\left\{\eta^{x, N}\right\}, \bigcup_{y \in S_{\star}^{2}}\left\{\eta^{y, N}\right\}\right)=\frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)
$$

And the transition rates indeed satisfy

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow r(x, y)
$$

proving the theorem

Open problems / future work

What if vertices in S_{\star} are not connected? Longer timescale(s)?

Can we compute relaxation time?

Can we compute thermodynamic limit?
Zero-range process: Armendáriz, Grosskinsky, Loulakis, 2015

Can we say something about the formation of the condensate? Studied for SIP in Grosskinsky, Redig, Vafayi, 2013

Can we obtain similar results for non-reversible dynamics? e.g. (T)ASIP on $\mathbb{Z} / L \mathbb{Z}$. Heuristics: Cao, Chleboun, Grosskinsky, 2014

