Ising models on power-law random graphs

Sander Dommers

Joint work with:
Cristian Giardinà
Remco van der Hofstad

Universality and Scaling Limits in Probability and Statistical Mechanics

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Ising model

Ising model: paradigm model in statistical physics for *cooperative* behavior.

When studied on complex networks it can model for example *opinion spreading* in society.

We will model complex networks with power-law random graphs.

What are effects of *structure* of complex networks on *behavior* of Ising model?

Definition of the Ising model

On a graph G_n , the *ferromagnetic Ising model* is given by the following Boltzmann distributions over $\sigma \in \{-1, +1\}^n$,

$$\mu(\sigma) = \frac{1}{Z_n(\beta, B)} \exp \left\{ \beta \sum_{(i,j) \in E_n} \sigma_i \sigma_j + B \sum_{i \in [n]} \sigma_i \right\},\,$$

where

- $\beta \geq 0$ is the inverse temperature;
- B is the external magnetic field;
- $ightharpoonup Z_n(\beta, B)$ is a normalization factor (the *partition function*), i.e.,

$$Z_n(\beta, B) = \sum_{\sigma \in \{-1,1\}^n} \exp \left\{ \beta \sum_{(i,j) \in E_n} \sigma_i \sigma_j + B \sum_{i \in [n]} \sigma_i \right\}.$$

Power-law random graphs

In the *configuration model* a graph $G_n = (V_n = [n], E_n)$ is constructed as follows.

- ► Let *D* have a certain distribution (the *degree distribution*);
- ► Assign D_i half-edges to each vertex i ∈ [n], where D_i are i.i.d. like D (Add one half-edge to last vertex when the total number of half-edges is odd);
- Attach first half-edge to another half-edge uniformly at random;
- Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

$$\mathbb{P}[D \ge k] \le ck^{-(\tau-1)}, \qquad \tau > 2.$$

Local structure configuration model for $\tau > 2$

Start from random vertex i which has degree D_i .

Look at neighbors of vertex i, probability such a neighbor has degree k+1 is approximately,

$$\frac{(k+1)\sum_{j\in[n]}\mathbb{1}_{\{D_j=k+1\}}}{\sum_{j\in[n]}D_j}$$

Local structure configuration model for $\tau > 2$

Start from random vertex i which has degree D_i .

Look at neighbors of vertex i, probability such a neighbor has degree k+1 is approximately,

$$\frac{(k+1)\sum_{j\in[n]}\mathbb{1}_{\{D_j=k+1\}}/n}{\sum_{j\in[n]}D_j/n}\longrightarrow \frac{(k+1)\mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \qquad \text{for } \tau>2.$$

Start from random vertex i which has degree D_i .

Look at neighbors of vertex i, probability such a neighbor has degree k+1 is approximately,

$$\frac{(k+1)\sum_{j\in[n]}\mathbb{1}_{\{D_j=k+1\}}/n}{\sum_{j\in[n]}D_j/n}\longrightarrow \frac{(k+1)\mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \qquad \text{for } \tau>2.$$

Let *K* have distribution (the *forward degree* distribution),

$$\mathbb{P}[K=k] = \frac{(k+1)\mathbb{P}[D=k+1]}{\mathbb{E}[D]}.$$

Locally tree-like structure: a branching process with offspring *D* in first generation and *K* in further generations. Also, *uniformly sparse*.

Theorem (Dembo, Montanari, '10)

For a locally tree-like and uniformly sparse graph sequence $\{G_n\}_{n\geq 1}$ with $\mathbb{E}[K] < \infty$, the pressure per particle,

$$\psi_n(\beta, B) = \frac{1}{n} \log Z_n(\beta, B),$$

converges, for $n \to \infty$, to

$$\varphi_h(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh(\beta) - \frac{\mathbb{E}[D]}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))] + \mathbb{E}\left[\log\left(e^B \prod_{i=1}^{D} \{1 + \tanh(\beta) \tanh(h_i)\}\right)\right]$$

$$+e^{-B}\prod_{i=1}^{D}\left\{1-\tanh(\beta)\tanh(h_i)\right\}$$
.

Theorem (DGvdH, '10)

Let $\tau > 2$. Then, in the configuration model, the pressure per particle,

$$\psi_n(\beta, B) = \frac{1}{n} \log Z_n(\beta, B),$$

converges almost surely, for $n \to \infty$, to

$$\varphi_h(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh(\beta) - \frac{\mathbb{E}[D]}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))]$$

$$+ \mathbb{E}\left[\log\left(e^{B}\prod_{i=1}^{D}\left\{1 + \tanh(\beta)\tanh(h_{i})\right\}\right.\right.$$
$$\left.\left.\left.\left.\left.\left.\left\{1 - \tanh(\beta)\tanh(h_{i})\right\}\right\right.\right)\right].$$

Proposition

Let K_t be i.i.d. like K and B > 0. Then, the recursion

$$h^{(t+1)} \stackrel{d}{=} B + \sum_{i=1}^{\kappa_t} \operatorname{atanh}(\tanh(\beta) \tanh(h_i^{(t)})),$$

has a unique fixed point h_{β}^* .

Interpretation: the *effective field* of a vertex in a *tree* expressed in that of its neighbors.

Uniqueness shown by showing that effect of *boundary conditions* on generation t vanishes for $t \to \infty$.

Correlation inequalities

Lemma (Griffiths, '67, Kelly, Sherman, '68)

For a ferromagnet with positive external field, the magnetization at a vertex will not decrease, when

- ► The number of edges increases;
- The external magnetic field increases;
- ► The temperature decreases.

Lemma (Griffiths, Hurst, Sherman, '70)

For a ferromagnet with positive external field, the magnetization is concave in the external fields, i.e.,

$$\frac{\partial^2}{\partial B_k \partial B_\ell} m_j(\underline{B}) \leq 0.$$

$$\lim_{n\to\infty}\psi_n(\beta,B)$$

$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(0, B) + \int_0^{\varepsilon} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' + \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' \right]$$

$$= \varphi_h(0, B) + 0 + \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', B) d\beta'$$

$$= \varphi_h(\beta, B).$$

$$\lim_{n\to\infty}\psi_n(\beta,B)$$

$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(0, B) + \int_0^{\varepsilon} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' + \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' \right]$$

$$= \varphi_h(0, B) + 0 + \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', B) d\beta'$$

$$= \varphi_h(\beta, B).$$

$$\lim_{n\to\infty}\psi_n(\beta,B)$$

$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(0, B) + \int_0^{\varepsilon} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' + \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' \right]$$

$$= \varphi_h(0, B) + 0 + \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', B) d\beta'$$

$$= \varphi_h(\beta, B).$$

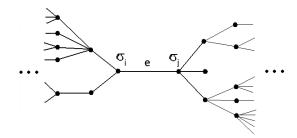
$$\underset{n\to\infty}{\lim}\psi_n(\beta,B)$$

$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(0, B) + \int_0^{\varepsilon} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' + \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' \right]$$

$$= \varphi_h(0, B) + 0 + \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', B) d\beta'$$

 $= \varphi_h(\beta, B).$

$$\begin{split} \frac{\partial}{\partial \beta} \psi_n(\beta, B) &= \frac{1}{n} \sum_{(i,j) \in E_n} \left\langle \sigma_i \sigma_j \right\rangle_{\mu} = \frac{|E_n|}{n} \frac{\sum_{(i,j) \in E_n} \left\langle \sigma_i \sigma_j \right\rangle_{\mu}}{|E_n|} \\ &\longrightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E} \left[\left\langle \sigma_i \sigma_j \right\rangle_{\mu} \right] \end{split}$$



$$\begin{split} \frac{\partial}{\partial \beta} \psi_n(\beta, B) &= \frac{1}{n} \sum_{(i,j) \in E_n} \left\langle \sigma_i \sigma_j \right\rangle_{\mu} = \frac{|E_n|}{n} \frac{\sum_{(i,j) \in E_n} \left\langle \sigma_i \sigma_j \right\rangle_{\mu}}{|E_n|} \\ &\longrightarrow \frac{\mathbb{E}[D]}{2} \mathbb{E} \left[\left\langle \sigma_i \sigma_j \right\rangle_{\mu} \right] \end{split}$$

$$h_i^{\star} \underbrace{ \begin{array}{ccc} \sigma_i & e & \sigma_j \\ & & \end{array}}_{} h_j^{\star}$$

$$\frac{\mathbb{E}[D]}{2}\mathbb{E}\left[\left\langle\sigma_{i}\sigma_{j}\right\rangle_{\mu}\right]\longrightarrow\frac{\mathbb{E}[D]}{2}\mathbb{E}\left[\left\langle\sigma_{i}\sigma_{j}\right\rangle_{e}\right]$$

$$\frac{\partial}{\partial \beta} \varphi_{h_{\beta}^*}(\beta, B) = \frac{\mathbb{E}[D]}{2} \mathbb{E}\left[\left\langle \sigma_i \sigma_j \right\rangle_e\right].$$

$$\varphi_h(\beta, B) = \frac{\mathbb{E}[D]}{2} \log \cosh(\beta) - \frac{\mathbb{E}[D]}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))] + \mathbb{E}\left[\log\left(e^B \prod_{i=1}^D \left\{1 + \tanh(\beta) \tanh(h_i)\right\} + e^{-B} \prod_{i=1}^D \left\{1 - \tanh(\beta) \tanh(h_i)\right\}\right)\right]$$

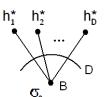
- Show that we can ignore dependence of h_{β}^* on β ; (Interpolation techniques. Split analysis into two parts, one for small degrees and one for large degrees)
- Compute the derivative with assuming β fixed in h_{β}^* .

Corollary

Let $\tau > 2$. Then, in the configuration model, a.s.:

The magnetization is given by

$$m(\beta, B) \equiv \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \langle \sigma_i \rangle_{\mu} = \frac{\partial}{\partial B} \varphi_{h^*}(\beta, B) = \mathbb{E} \left[\langle \sigma_0 \rangle_{\nu_{D+1}} \right].$$



The susceptibility is given by

$$\chi(\beta, B) \equiv \lim_{n \to \infty} \frac{\partial M_n(\beta, B)}{\partial B} = \frac{\partial^2}{\partial B^2} \varphi_{h^*}(\beta, B).$$

Define the *magnetization* on G_n as

$$m_n(\beta, B) = \frac{1}{n} \sum_{i=1}^n \langle \sigma_i \rangle_{\mu}.$$

Then, the spontaneous magnetization,

$$m(\beta, 0+) = \lim_{B \downarrow 0} m(\beta, B) \begin{cases} = 0, & \beta < \beta_c; \\ > 0, & \beta > \beta_c. \end{cases}$$

The *critical inverse temperature* β_c is given by

$$\mathbb{E}[K](\tanh \beta_c) = 1.$$

Note that, for $\tau \in (2,3)$, we have $\mathbb{E}[K] = \infty$, so that $\beta_c = 0$.

Critical exponents

Predictions by physicists (e.g. Leone, Vázquez, Vespignani, Zecchina, '02).

Critical behavior of magnetization m, and susceptibility χ .

	$m(\beta, 0^+), \beta \downarrow \beta_c$	$m(\beta_c, B), B \downarrow 0$	$\chi(\beta, 0^+), \beta \downarrow \beta_c$
$\tau > 5$	$\sim (\beta - \beta_c)^{1/2}$	$\sim B^{1/3}$	$\sim (\beta - \beta_c)^{-1}$
$\tau \in (3,5)$	$\sim (\beta - \beta_c)^{1/(\tau-3)}$	$\sim B^{1/(\tau-2)}$	
$\tau \in (2,3)$	$\sim (\beta - \beta_c)^{1/(3-\tau)}$	$\sim B^1$	$\sim (\beta - \beta_c)^1$

Distances in power-law random graphs

Let H_n be the graph distance between two *uniformly chosen connected* vertices in the configuration model. Then:

▶ For $\tau > 3$ and $\mathbb{E}[K] > 1$ (vdH, Hooghiemstra, Van Mieghem, '05),

$$H_n \sim \log n$$
,

► For $\tau \in (2,3)$ (vdH, Hooghiemstra, Znamenski, '07),

$$H_n \sim \log \log n$$
;

Distances in power-law random graphs

Let H_n be the graph distance between two *uniformly chosen connected* vertices in the configuration model. Then:

▶ For $\tau > 3$ and $\mathbb{E}[K] > 1$ (vdH, Hooghiemstra, Van Mieghem, '05),

$$H_n \sim \log n$$
,

► For $\tau \in (2,3)$ (vdH, Hooghiemstra, Znamenski, '07),

$$H_n \sim \log \log n$$
;

For $\tau > 3$ and $\tau \in (2,3)$ similar results hold for the diameter of linear preferential attachment models (D, vdH, Hooghiemstra, '10).

