Metastability in the reversible inclusion process

Sander Dommers

Joint work with
Alessandra Bianchi and Cristian Giardinà

Inclusion process

RUB

Interacting particle system with N particles
Vertex set S with $|S|<\infty$
Configuration $\eta=\left(\eta_{x}\right)_{x \in S} \in\{0, \ldots, N\}^{S}, \eta_{x}=$ \#particles on $x \in S$
Underlying random walk on S with transition rates $r(x, y)$
Inclusion process is continuous time Markov process with generator

$$
\mathcal{L} f(\eta)=\sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[f\left(\eta^{x, y}\right)-f(\eta)\right]
$$

Particle jump rates

RUB

Particle jump rates can be split into $\eta_{x} d_{N} r(x, y)$ independent random walkers diffusion $\eta_{x} \eta_{y} r(x, y)$ attractive interaction inclusion

Particle jump rates

RUB

Particle jump rates can be split into
$\eta_{x} d_{N} r(x, y)$ independent random walkers diffusion $\eta_{x} \eta_{y} r(x, y)$ attractive interaction inclusion

Comparison with other processes

$$
\begin{array}{ll}
\eta_{x}\left(1-\eta_{y}\right) r(x, y) & \text { exclusion process } \\
g\left(\eta_{x}\right) r(x, y) & \text { zero range process }
\end{array}
$$

Motivation

RUB

Symmetric IP on \mathbb{Z} introduced as dual of Brownian momentum process Giardinà, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process
Interesting dynamical behavior: condensation / metastability In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013

Motivation

RUB

Symmetric IP on \mathbb{Z} introduced as dual of Brownian momentum process Giardinà, Kurchan, Redig, Vafayi, 2007-2010

Natural bosonic counterpart to the (fermionic) exclusion process
Interesting dynamical behavior: condensation / metastability In symmetric IP: Grosskinsky, Redig, Vafayi 2011, 2013

Can we analyze this using the martingale approach?
Beltrán, Landim, 2010

Successfully used for reversible zero range process Beltrán, Landim, 2012

Can we generalize results to the reversible IP?

Reversible inclusion process

RUB

Random walk $r(\cdot, \cdot)$ reversible w.r.t. some measure $m(\cdot)$

$$
m(x) r(x, y)=m(y) r(y, x) \quad \forall x, y \in S
$$

Normalized such that

$$
\max _{x \in S} m(x)=1
$$

Reversible inclusion process

RUB

Random walk $r(\cdot, \cdot)$ reversible w.r.t. some measure $m(\cdot)$

$$
m(x) r(x, y)=m(y) r(y, x) \quad \forall x, y \in S
$$

Normalized such that

$$
\max _{x \in S} m(x)=1
$$

Then, also inclusion process reversible w.r.t. probability measure

$$
\mu_{N}(\eta)=\frac{1}{Z_{N}} \prod_{x \in S} m(x)^{\eta_{x}} w_{N}\left(\eta_{x}\right)
$$

where Z_{N} is a normalization constant and

$$
w_{N}(k)=\frac{\Gamma\left(d_{N}+k\right)}{k!\Gamma\left(d_{N}\right)}
$$

Condensation

RUB

Let $S_{\star}=\{x \in S: m(x)=1\}$ and $\eta^{x, N}$ the configuration η with $\eta_{x}=N$

Proposition

Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$. Then

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\eta^{x, N}\right)=\frac{1}{\left|S_{\star}\right|} \quad \forall x \in S_{\star}
$$

Condensation

RUB

Let $S_{\star}=\{x \in S: m(x)=1\}$ and $\eta^{x, N}$ the configuration η with $\eta_{x}=N$

Proposition

Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$. Then

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\eta^{x, N}\right)=\frac{1}{\left|S_{\star}\right|} \quad \forall x \in S_{\star}
$$

Assumption on d_{N} such that

$$
\frac{N}{d_{N}} w_{N}(N)=\frac{1}{d_{N} \Gamma\left(d_{N}\right)} \frac{\Gamma\left(N+d_{N}\right)}{(N-1)!}=\frac{1}{\Gamma\left(d_{N}+1\right)} e^{d_{N} \log N}(1+o(1)) \rightarrow 1
$$

(using Stirling's approximation)

Movement of the condensate

RUB

Consider the following process on $S_{\star} \cup\{0\}$:

$$
X_{N}(t)=\sum_{x \in S_{\star}} x \mathbb{1}_{\left\{\eta_{x}(t)=N\right\}}
$$

Theorem (Bianchi, D., Giardinà, 2016)

Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty$ and that $\eta_{y}(0)=N$ for some $y \in S_{\star}$. Then

$$
X_{N}\left(t / d_{N}\right) \text { converges weakly to } x(t) \quad \text { as } N \rightarrow \infty
$$

where $x(t)$ is a Markov process on S_{\star} with $x(0)=y$ and transition rates

$$
p(x, y)=r(x, y)
$$

Example

RUB

Zero range process Beltrán, Landim, 2012

RUB

Underlying reversible random walk $r(\cdot, \cdot)$
Transition rates for a particle to move from x to y

$$
\left(\frac{\eta_{x}}{\eta_{x}-1}\right)^{\alpha} r(x, y), \quad \alpha>1
$$

Condensate consists of at least $N-\ell_{N}$ particles, $\ell_{N}=o(N)$
At timescale $t N^{\alpha+1}$ the condensate moves from $x \in S_{\star}$ to $y \in S_{\star}$ at rate

$$
p(x, y)=C_{\alpha} \operatorname{cap}(x, y)
$$

where $\operatorname{cap}(x, y)$ is the capacity of the underlying random walk between x and y

Proof strategy

RUB

If $r(\cdot, \cdot)$ is symmetric $\left(S=S_{\star}\right)$, cite Grosskinsky, Redig, Vafayi, 2013
They analyze directly rescaled generator
Otherwise, martingale approach Beltrán, Landim, 2010
Potential theory combined with martingale arguments
Successfully applied to zero range process Beltrán, Landim, 2012

Martingale approach Beltrán, Landim, 2010

RUB

To prove the theorem we need to check the following three hypotheses:
(H0) $\quad \lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow p(x, y)=r(x, y)$ where $p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$ rate to go from $\eta^{x, N}$ to $\eta^{y, N}$ in original process
(H1) All states in each metastable set are visited before exiting
(H2)

$$
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\eta: \nexists y \in S_{\star}: \eta_{y}=N\right)}{\mu_{N}\left(\eta^{x, N}\right)}=0 \quad \forall x \in S_{\star}
$$

Martingale approach Beltrán, Landim, 2010

RUB

To prove the theorem we need to check the following three hypotheses:
(H0) $\quad \lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow p(x, y)=r(x, y)$ where $p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$ rate to go from $\eta^{x, N}$ to $\eta^{y, N}$ in original process
(H1) All states in each metastable set are visited before exiting Trivial
(H2)

$$
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\eta: \nexists y \in S_{\star}: \eta_{y}=N\right)}{\mu_{N}\left(\eta^{x, N}\right)}=0 \quad \forall x \in S_{\star}
$$

Martingale approach Beltrán, Landim, 2010

RUB

To prove the theorem we need to check the following three hypotheses:
(H0) $\quad \lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow p(x, y)=r(x, y)$ where $p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$ rate to go from $\eta^{x, N}$ to $\eta^{y, N}$ in original process
(H1) All states in each metastable set are visited before exiting Trivial
(H2)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\eta: \nexists y \in S_{\star}: \eta_{y}=N\right)}{\mu_{N}\left(\eta^{x, N}\right)}=0 \quad \forall x \in S_{\star} \tag{Easy}
\end{equation*}
$$

Potential theory

RUB

Relation between random walks and electric networks

Doyle, Snell, 1984

For reversible dynamics we can define conductances ($=1 /$ resistance)

$$
c(x, y)=\mu(x) p(x, y)
$$

If A, B disjoint, let $h_{A, B}$ be the equilibrium potential, i.e., the solution to the Dirichlet problem

$$
\begin{cases}\mathcal{L} h_{A, B}(x)=0 & \text { if } x \notin A \cup B \\ h_{A, B}(x)=1 & \text { if } x \in A \\ h_{A, B}(x)=0 & \text { if } x \in B\end{cases}
$$

Potential theory

RUB

Probabilistic interpretation

$$
h_{A, B}(x)=\mathbb{P}_{x}\left[\tau_{A}<\tau_{B}\right]
$$

where τ_{A} is the hitting time of A

$$
\tau_{A}=\inf \{t \geq 0: x(t) \in A\}
$$

Capacities

RUB

Important quantity is the capacity ($=1$ /effective resistance) between A and B, given by

$$
\operatorname{Cap}(A, B):=D\left(h_{A, B}\right):=\frac{1}{2} \sum_{x, y} c(x, y)\left[h_{A, B}(x)-h_{A, B}(y)\right]^{2}
$$

$D(F)$ is called the Dirichlet form
If A and B are disjoint sets, then

$$
\mathbb{E}_{\nu_{A, B}}\left[\tau_{B}\right]=\frac{\mu\left(h_{A, B}\right)}{\operatorname{Cap}(A, B)}
$$

Bovier, Eckhoff, Gayrard, Klein, 2001-2004

Variational principles

RUB

Capacity can be computed using Dirichlet principle

$$
\operatorname{Cap}(A, B)=\inf \{D(F): F(x)=1 \forall x \in A, F(x)=0 \forall x \in B\}
$$

Minimizer is $F=h_{A, B}$, but get upper bound for any test function F

There also exist variational principles, the Thomson and Berman-Konsowa principle, where the capacity is expressed as a supremum over flows

Capacities in inclusion process

RUB

Capacities satisfy

$$
\operatorname{Cap}_{N}(A, B)=\inf \left\{D_{N}(F): F(\eta)=1 \forall \eta \in A, F(\xi)=0 \forall \eta \in B\right\}
$$

where $D_{N}(F)$ is the Dirichlet form

$$
D_{N}(F)=\frac{1}{2} \sum_{\eta} \mu_{N}(\eta) \sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2}
$$

Lemma (Beltrán, Landim, 2010)
$\mu_{N}\left(\eta^{x, N}\right) p_{N}\left(\eta^{x, N}, \eta^{y, N}\right)$

$$
\begin{gathered}
=\frac{1}{2}\left\{\operatorname{Cap}_{N}\left(\left\{\eta^{x, N}\right\}, \bigcup_{z \in S_{\star}, z \neq x}\left\{\eta^{z, N}\right\}\right)+\operatorname{Cap}_{N}\left(\left\{\eta^{y, N}\right\}, \bigcup_{z \in S_{\star}, z \neq y}\left\{\eta^{z, N}\right\}\right)\right. \\
\left.-\operatorname{Cap}_{N}\left(\left\{\eta^{x, N}, \eta^{y, N}\right\}, \bigcup_{z \in S_{\star}, z \neq x, y}\left\{\eta^{z, N}\right\}\right)\right\}
\end{gathered}
$$

Capacities in inclusion process

RUB

Proposition

Let $S_{\star}^{1} \subsetneq S_{\star}$ and $S_{\star}^{2}=S_{\star} \backslash S_{\star}^{1}$. Then, for $d_{N} \log N \rightarrow 0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{x \in S_{*}^{1}}\left\{\eta^{x, N}\right\}, \bigcup_{y \in S_{x}^{2}}\left\{\eta^{y, N}\right\}\right)=\frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{x}^{2}} r(x, y)
$$

Combining this proposition and the previous lemma indeed gives

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow r(x, y)
$$

Lower bound on Dirichlet form

RUB

Fix any function F such that $F\left(\eta^{x, N}\right)=1 \forall x \in S_{\star}^{1}$ and
$F\left(\eta^{y, N}\right)=0 \forall y \in S_{\star}^{2}$
Sufficient to show that

$$
D_{N}(F) \geq d_{N} \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)(1+o(1))
$$

Lower bound on Dirichlet form

RUB

Fix any function F such that $F\left(\eta^{x, N}\right)=1 \forall x \in S_{\star}^{1}$ and
$F\left(\eta^{y, N}\right)=0 \forall y \in S_{\star}^{2}$
Sufficient to show that

$$
D_{N}(F) \geq d_{N} \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)(1+o(1))
$$

For lower bound we can throw away terms in the Dirichlet form

$$
\begin{aligned}
D_{N}(F) & =\frac{1}{2} \sum_{\eta} \mu_{N}(\eta) \sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& \geq \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y) \sum_{\eta_{x}+\eta_{y}=N} \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2}
\end{aligned}
$$

If condensates jumps from x to y all particles will move from x to y

Lower bound on Dirichlet form (continued)

RUB

Fix $x \in S_{\star}^{1}, y \in S_{\star}^{2}$. If $\eta_{x}+\eta_{y}=N$ it is sufficient to know how many particles are on x

$$
\begin{aligned}
\sum_{\eta_{x}+\eta_{y}=N} & \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& =\sum_{k=1}^{N} \frac{w_{N}(k) w_{N}(N-k)}{Z_{N}} k\left(d_{N}+N-k\right)[G(k-1)-G(k)]^{2}
\end{aligned}
$$

where $G(k)=F\left(\eta_{x}=k, \eta_{y}=N-k\right)$ and where we used $m(x)=m(y)=1$ since $x \in S_{\star}^{1}, y \in S_{\star}^{2}$

Lower bound on Dirichlet form (continued)

RUB

Fix $x \in S_{\star}^{1}, y \in S_{\star}^{2}$. If $\eta_{x}+\eta_{y}=N$ it is sufficient to know how many particles are on x

$$
\begin{aligned}
\sum_{\eta_{x}+\eta_{y}=N} & \mu_{N}(\eta) \eta_{x}\left(d_{N}+\eta_{y}\right)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
& =\sum_{k=1}^{N} \frac{w_{N}(k) w_{N}(N-k)}{Z_{N}} k\left(d_{N}+N-k\right)[G(k-1)-G(k)]^{2} \\
& \geq \frac{d_{N}}{\left|S_{\star}\right|}(1+o(1))
\end{aligned}
$$

Lower bound follows from capacity of linear chain and asymptotics of w_{N} and Z_{N}

Lower bound on Dirichlet form (conclusion)

RUB

Hence, indeed,

$$
\frac{1}{d_{N}} D_{N}(F) \geq \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)(1+o(1))
$$

Taking infimum and limit on both sides indeed proves that

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{x \in S_{\star}^{1}}\left\{\eta^{x, N}\right\}, \bigcup_{y \in S_{\star}^{2}}\left\{\eta^{y, N}\right\}\right) \geq \frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)
$$

Upper bound on Dirichlet form

RUB

Need to construct test function $F(\eta)$
Good guess inside tubes $\eta_{x}+\eta_{y}=N: F(\eta) \approx \eta_{x} / N$
In fact better to choose smooth monotone function $\phi(t), t \in[0,1]$ with
$\phi(t)=1-\phi(1-t) \forall t \in[0,1]$
$\phi(t)=0$ if $t \leq \varepsilon$
and set $F(\eta)=\phi\left(\eta_{x} / N\right)$
For general η we set

$$
F(\eta)=\sum_{x \in S_{\star}^{1}} \phi\left(\eta_{x} / N\right)
$$

Observations for upper bound on $D_{N}(F)$

RUB

$$
\begin{gathered}
D_{N}(F)=\frac{1}{2} \sum_{\eta} \mu_{N}(\eta) \sum_{x, y \in S} \eta_{x}\left(d_{N}+\eta_{y}\right) r(x, y)\left[F\left(\eta^{x, y}\right)-F(\eta)\right]^{2} \\
F(\eta)=\sum_{x \in S_{\star}^{1}} \phi\left(\eta_{x} / N\right)
\end{gathered}
$$

By construction particles moving from $x \in S_{\star}^{1}$ to $y \in S_{\star}^{2}$ give correct contribution

If numbers of particles on sites in S_{\star}^{1} don't change, or if particles move between sites in S_{\star}^{1}, F is constant

Unlikely to be in config. with particles on three sites / sites not in S_{\star}
Unlikely for a particle to escape from a tube

Capacities in inclusion process (conclusion)

RUB

Combining the lower and upper bound indeed this proposition follows
Proposition
Let $S_{\star}^{1} \subsetneq S_{\star}$ and $S_{\star}^{2}=S_{\star} \backslash S_{\star}^{1}$. Then, for $d_{N} \log N \rightarrow 0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} \operatorname{Cap}_{N}\left(\bigcup_{x \in S_{\star}^{1}}\left\{\eta^{x, N}\right\}, \bigcup_{y \in S_{\star}^{2}}\left\{\eta^{y, N}\right\}\right)=\frac{1}{\left|S_{\star}\right|} \sum_{x \in S_{\star}^{1}} \sum_{y \in S_{\star}^{2}} r(x, y)
$$

And the transition rates indeed satisfy

$$
\lim _{N \rightarrow \infty} \frac{1}{d_{N}} p_{N}\left(\eta^{x, N}, \eta^{y, N}\right) \rightarrow r(x, y)
$$

proving the theorem

Longer timescales

RUB

If induced random walk on S_{\star} is not connected, condensate jumps on longer timescales

We focus on simple case where the graph is a line

$$
S=\{1, \ldots, L\} \quad S_{\star}=\{1, L\} \quad r(x, y) \neq 0 \text { iff }|x-y|=1
$$

Second timescale

RUB

For $L=3$ jumps occur at rate d_{N}^{2} / N
Theorem (Bianchi, D., Giardinà, 2016)
Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty, d_{N}$ decays subexponentially and that $\eta_{y}(0)=N$ for some $y \in S_{\star}$. Then, for $L=3$,

$$
X_{N}\left(t N / d_{N}^{2}\right) \text { converges weakly to } x(t) \quad \text { as } N \rightarrow \infty
$$

where $x(t)$ is a Markov process on S_{\star} with $x(0)=y$ and transition rates

$$
p(1,3)=p(3,1)=\left(\frac{1}{r(1,2)}+\frac{1}{r(3,2)}\right)^{-1} \frac{1}{1-m_{\star}(2)}
$$

Third timescale

RUB

For $L \geq 4$ jumps occur at rate d_{N}^{3} / N^{2}
Theorem (Bianchi, D., Giardinà, 2016)
Suppose that $d_{N} \log N \rightarrow 0$ as $N \rightarrow \infty, d_{N}$ decays subexponentially. Then, for $L \geq 4$, there exist constants $0<C_{1} \leq C_{2}<\infty$ such that

$$
C_{1} \leq \liminf _{N \rightarrow \infty} \frac{d_{N}^{3}}{N^{2}} \mathbb{E}_{\eta^{1, N}}\left[\tau_{\eta^{L, N}}\right] \leq \limsup _{N \rightarrow \infty} \frac{d_{N}^{3}}{N^{2}} \mathbb{E}_{\eta^{1, N}}\left[\tau_{\eta^{\llcorner, N}}\right] \leq C_{2}
$$

Conjectured transition rates of time-rescaled process

$$
p(1, L)=p(L, 1)=3\left(\sum_{\ell=2}^{L-2} \frac{\left(1-m_{\star}(\ell)\right)\left(1-m_{\star}(\ell+1)\right)}{m_{\star}(\ell) r(\ell, \ell+1)}\right)^{-1}
$$

Open problems / future work

Complete picture in case vertices in S_{\star} are not connected Conjecture: Only these 3 timescales

Compute relaxation time

Compute thermodynamic limit
Zero-range process: Armendáriz, Grosskinsky, Loulakis, 2015

Study formation of the condensate
Studied for SIP in Grosskinsky, Redig, Vafayi, 2013

Study behavior for non-reversible dynamics
e.g. (T)ASIP on $\mathbb{Z} / L \mathbb{Z}$. Heuristics: Cao, Chleboun, Grosskinsky, 2014

