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Ising model

Ising model: paradigm model in statistical physics for cooperative
behavior.

When studied on complex networks it can model for example opinion
spreading in society.

We will model complex networks with power-law random graphs.

What are effects of structure of complex networks on behavior of Ising
model?
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Power-law random graphs .

In the configuration model (CM) a graph G, = (V, = [n], E,) is
constructed as follows.

» Let D have a certain distribution (the degree distribution);

» Assign D; half-edges to each vertex i € [n], where D; arei.i.d. like D
(Add one half-edge to last vertex when the total number of
half-edges is odd);

» Attach first half-edge to another half-edge uniformly at random;

» Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

ck™" <P[D=k]<Ck™", T > 2.
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Local structure configuration model for r > 2

Start from random vertex, which has degree distributed as D, and look
at its neighbors.
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Local structure configuration model for r > 2

Start from random vertex, which has degree distributed as D, and look
at its neighbors.
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Locally tree-like structure: a branching process with offspring D in first
generation and K in further generations. Also, uniformly sparse.
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Definition of the Ising model

On a graph G,, the ferromagnetic Ising modelis given by the following
Boltzmann distribution overo ¢ {—1, +1}",

1
u((;):iexp ,3 Z O’[Ui‘i‘BZO’[ s
Z,(B, B) 07 ;
J)€EER ie[n]
where

» B > 0isthe inverse temperature;

» B is the external magnetic field;

» Z,(B, B) is a normalization factor (the partition function), i.e.,

Z,(B.B)= Y  expiB Y oicj+B> o

oe{—1,1}" (i,j)eEn ie[n]
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Previous results

Theorem (Dembo, Montanari, ’10)
IfE[K] < oo, then the pressure per particle in the thermodynamic limit,
a.s.,

lim % log Z,(B, B) = ¢(B, B),

for some explicit function ¢(B, B).
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Previous results

Theorem (Dembo, Montanari, ’10)
IfE[K] < oo, then the pressure per particle in the thermodynamic limit,
a.s.,

lim % log Z,(B, B) = ¢(B, B),

for some explicit function ¢(B, B).

Theorem (DGvdH, ’10)
The same holds fort > 2.
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Magnetization

Define the magnetization as
10
M(p, B) = lim Z (i),
i=1
where (-) , denotes the expectation under the Ising measure /..

The spontaneous magnetization is then defined as

M(B,0") = lim M6, B).

The critical temperature . equals

Be = inf{B : M(B,0T) > 0}.
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Critical temperature

Theorem (Lyons, ’89, DGvdH, ’12)
The critical temperature B, equals, a.s.,

B¢ = atanh(1/E[K]).

Note that, for r € (2, 3), we have E[K] = oo, so that B, = 0.

We study critical exponents for r > 3.
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Critical exponents

The critical exponents are defined as:

M@B,0%) < (B — Bo)P, for B\ B
M(Bc, B) < B3, for B N\, 0;
xX(B,0M) =< (B—B)77, for g/ Be.

where x (8, B) = S5 M(B, B).

Theorem (DGvdH, ’12)

E[K3] < 00 Te€(3,4)U(4,5)
B 1/2 1/(z = 3)
8 3 T—2
y 1 1
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Tree recursion

Root magnetization on a tree:

, B
hy
B_-B B .
5 ...%<h2
hp

B

Effective field h* is unique solution to recursion

¢
h(t+1) g B+ Zt:S(h,'(t))’

i=1

where,
&(h) = atanh(tanh(B) tanh(h)).
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Magnetization

The magnatization equals

D
M(B,B)=E |:tanh (B + ZS(h,»)ﬂ

i=1
~ B + E[D]E[&(h)].
Hence, same scaling for M (8, B) and E[£(h)].

nnnnnnnn

/ department of mathematics and computer science



Sketch of proof

Taylor expansion of E[£(h)] :

K
E[(h)] =E [s (B + Zsmoﬂ

i=1

~ tanh(B)E[h] — CE[h°]

K 3
= tanh(B) (B + E[K]E[§(h)]) — CE [(B + Z%(h)) :| :

i=1
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Sketch of proof

Taylor expansion of E[£(h)] :

K
E[(h)] =E [s (B + Zsmoﬂ

i=1

~ tanh(B)E[h] — CE[h°]

K 3
= tanh(B) (B + E[K]E[§(h)]) — CE [(B + Z%(h)) :| .

i=1
Only allowed for E[K*] < co. In that case

E[£(h)] ~ tanh(8)B + tanh(B)E[KIE[s (h)] — CE[5(h)]’.
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Critical exponent 8

For E[K?] < oo,
E[£(h)] ~ tanh(8)B + tanh(B)E[K]E[£(h)] — CE[£(h)]>.
For B > B.and B N\, 0,

1~ tanh(B)E[K] — CE[£(ho)]*.

Hence,
tanh(8)E[K] — 1 /2 12
E[% (ho)] ~ ( c > =P
thus
B=1/2.
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Critical exponent &

For E[K?] < oo,
E[£(h)] ~ tanh(8)B + tanh(B)E[K]E[£(h)] — CE[£(h)]?
For3 = pB.and B > 0,

E[£(ho)] ~ tanh(Bc)B + 1E[& (hc)] — CE[&(ho)T.

Hence, p
1
E[S(hc)] ~ <W) = 31/3’

thus
é =3.
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Thecaset € (3, 5)

Forz € (3, 5), write

E[§(h)] =tanh(B) (B + E[KIE[§(h)])

K
+E [g (B + Zg(h;)) — tanh(B) (B + KE[g(h)])} :

i=1
By taking degrees into account precisely, we can show that
E[£(h)] ~ tanh(B) (B + E[K]E[£(h)]) — CE[£(h)]"2,

yielding
B=1/(x—3) and §§=r1-—2.
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Theorem (DGvdH, ’12)

E[K3] < oo T e€(3.4)U(4,5)
B 1/2 1/(x = 3)
8 3 T—2
Y 1 1
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Theorem (DGvdH, ’12)

E[K3] < o0 te(3,4)U(4,5)
B 1/2 1/(r —3)
1) 3 T—2
y 1 1

Conjectured that also

E[K3] < 00 T1e€(3,4)U(4,5)
y’ 1 1
o 0 (t =5)/(r = 3)
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