Ising critical exponents on power-law random graphs

Sander Dommers

Joint work with:
Cristian Giardinà Remco van der Hofstad

Ising model

Ising model: paradigm model in statistical physics for cooperative behavior.

When studied on complex networks it can model for example opinion spreading in society.

We will model complex networks with power-law random graphs.
What are effects of structure of complex networks on behavior of Ising model?

Power-law random graphs

In the configuration model $(C M)$ a graph $G_{n}=\left(V_{n}=[n], E_{n}\right)$ is constructed as follows.

- Let D have a certain distribution (the degree distribution);
- Assign D_{i} half-edges to each vertex $i \in[n]$, where D_{i} are i.i.d. like D (Add one half-edge to last vertex when the total number of half-edges is odd);
- Attach first half-edge to another half-edge uniformly at random;
- Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

$$
c k^{-\tau} \leq \mathbb{P}[D=k] \leq C k^{-\tau}, \quad \tau>2 .
$$

Local structure configuration model for $\tau>2$

Start from random vertex, which has degree distributed as D, and look at its neighbors.

Local structure configuration model for $\tau>2$

Start from random vertex, which has degree distributed as D, and look at its neighbors.

Locally tree-like structure: a branching process with offspring D in first generation and K in further generations. Also, uniformly sparse.

Definition of the Ising model

On a graph G_{n}, the ferromagnetic Ising model is given by the following Boltzmann distribution over $\sigma \in\{-1,+1\}^{n}$,

$$
\mu(\sigma)=\frac{1}{Z_{n}(\beta, B)} \exp \left\{\beta \sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}+B \sum_{i \in[n]} \sigma_{i}\right\},
$$

where

- $\beta \geq 0$ is the inverse temperature;
- B is the external magnetic field;
- $Z_{n}(\beta, B)$ is a normalization factor (the partition function), i.e.,

$$
Z_{n}(\beta, B)=\sum_{\sigma \in\{-1,1\}^{n}} \exp \left\{\beta \sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}+B \sum_{i \in[n]} \sigma_{i}\right\} .
$$

Previous results

Theorem (Dembo, Montanari, '10)

If $\mathbb{E}[K]<\infty$, then the pressure per particle in the thermodynamic limit, a.s.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}(\beta, B)=\varphi(\beta, B)
$$

for some explicit function $\varphi(\beta, B)$.

Previous results

Theorem (Dembo, Montanari, '10)

If $\mathbb{E}[K]<\infty$, then the pressure per particle in the thermodynamic limit, a.s.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}(\beta, B)=\varphi(\beta, B)
$$

for some explicit function $\varphi(\beta, B)$.

Theorem (DGvdH, '10)

The same holds for $\tau>2$.

Magnetization

Define the magnetization as

$$
M(\beta, B) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left\langle\sigma_{i}\right\rangle_{\mu},
$$

where $\langle\cdot\rangle_{\mu}$ denotes the expectation under the Ising measure μ.
The spontaneous magnetization is then defined as

$$
M\left(\beta, 0^{+}\right) \equiv \lim _{B \searrow 0} M(\beta, B)
$$

The critical temperature β_{c} equals

$$
\beta_{c} \equiv \inf \left\{\beta: M\left(\beta, 0^{+}\right)>0\right\}
$$

Critical temperature

Theorem (Lyons, '89, DGvdH, '12)
The critical temperature β_{c} equals, a.s.,

$$
\beta_{c}=\operatorname{atanh}(1 / \mathbb{E}[K]) .
$$

Note that, for $\tau \in(2,3)$, we have $\mathbb{E}[K]=\infty$, so that $\beta_{c}=0$.
We study critical exponents for $\tau>3$.

Critical exponents

The critical exponents are defined as:

$$
\begin{array}{ll}
M\left(\beta, 0^{+}\right) \asymp\left(\beta-\beta_{c}\right)^{\beta}, & \text { for } \beta \searrow \beta_{c} ; \\
M\left(\beta_{c}, B\right) \asymp B^{1 / \delta}, & \text { for } B \searrow 0 \\
\chi\left(\beta, 0^{+}\right) \asymp\left(\beta-\beta_{c}\right)^{-\gamma}, & \text { for } \beta \nearrow \beta_{c},
\end{array}
$$

where $\chi(\beta, B)=\frac{\partial}{\partial B} M(\beta, B)$.
Theorem (DGvdH, '12)

Tree recursion

Root magnetization on a tree:

Effective field h^{*} is unique solution to recursion

$$
h^{(t+1)} \stackrel{d}{=} B+\sum_{i=1}^{K_{t}} \xi\left(h_{i}^{(t)}\right)
$$

where,

$$
\xi(h)=\operatorname{atanh}(\tanh (\beta) \tanh (h)) .
$$

Magnetization

The magnatization equals

$$
\begin{aligned}
M(\beta, B) & =\mathbb{E}\left[\tanh \left(B+\sum_{i=1}^{D} \xi\left(h_{i}\right)\right)\right] \\
& \approx B+\mathbb{E}[D] \mathbb{E}[\xi(h)] .
\end{aligned}
$$

Hence, same scaling for $M(\beta, B)$ and $\mathbb{E}[\xi(h)]$.

Sketch of proof

Taylor expansion of $\mathbb{E}[\xi(h)]$:

$$
\begin{aligned}
\mathbb{E}[\xi(h)] & =\mathbb{E}\left[\xi\left(B+\sum_{i=1}^{K} \xi\left(h_{i}\right)\right)\right] \\
& \approx \tanh (\beta) \mathbb{E}[h]-C \mathbb{E}\left[h^{3}\right] \\
& =\tanh (\beta)(B+\mathbb{E}[K] \mathbb{E}[\xi(h)])-C \mathbb{E}\left[\left(B+\sum_{i=1}^{K} \xi\left(h_{i}\right)\right)^{3}\right] .
\end{aligned}
$$

Sketch of proof

Taylor expansion of $\mathbb{E}[\xi(h)]$:

$$
\begin{aligned}
\mathbb{E}[\xi(h)] & =\mathbb{E}\left[\xi\left(B+\sum_{i=1}^{K} \xi\left(h_{i}\right)\right)\right] \\
& \approx \tanh (\beta) \mathbb{E}[h]-C \mathbb{E}\left[h^{3}\right] \\
& =\tanh (\beta)(B+\mathbb{E}[K] \mathbb{E}[\xi(h)])-C \mathbb{E}\left[\left(B+\sum_{i=1}^{K} \xi\left(h_{i}\right)\right)^{3}\right] .
\end{aligned}
$$

Only allowed for $\mathbb{E}\left[K^{3}\right]<\infty$. In that case

$$
\mathbb{E}[\xi(h)] \approx \tanh (\beta) B+\tanh (\beta) \mathbb{E}[K] \mathbb{E}[\xi(h)]-C \mathbb{E}[\xi(h)]^{3}
$$

Critical exponent β

For $\mathbb{E}\left[K^{3}\right]<\infty$,

$$
\mathbb{E}[\xi(h)] \approx \tanh (\beta) B+\tanh (\beta) \mathbb{E}[K] \mathbb{E}[\xi(h)]-C \mathbb{E}[\xi(h)]^{3}
$$

For $\beta>\beta_{c}$ and $B \searrow 0$,

$$
1 \approx \tanh (\beta) \mathbb{E}[K]-C \mathbb{E}\left[\xi\left(h_{0}\right)\right]^{2}
$$

Hence,

$$
\mathbb{E}\left[\xi\left(h_{0}\right)\right] \approx\left(\frac{\tanh (\beta) \mathbb{E}[K]-1}{C}\right)^{1 / 2} \asymp\left(\beta-\beta_{c}\right)^{1 / 2}
$$

thus

$$
\beta=1 / 2
$$

Critical exponent δ

For $\mathbb{E}\left[K^{3}\right]<\infty$,

$$
\mathbb{E}[\xi(h)] \approx \tanh (\beta) B+\tanh (\beta) \mathbb{E}[K] \mathbb{E}[\xi(h)]-C \mathbb{E}[\xi(h)]^{3}
$$

For $\beta=\beta_{c}$ and $B>0$,

$$
\mathbb{E}\left[\xi\left(h_{c}\right)\right] \approx \tanh \left(\beta_{c}\right) B+1 \mathbb{E}\left[\xi\left(h_{c}\right)\right]-C \mathbb{E}\left[\xi\left(h_{c}\right)\right]^{3}
$$

Hence,

$$
\mathbb{E}\left[\xi\left(h_{c}\right)\right] \approx\left(\frac{\tanh \left(\beta_{c}\right) B}{C}\right)^{1 / 3} \asymp B^{1 / 3}
$$

thus

$$
\delta=3
$$

The case $\tau \in(3,5)$

For $\tau \in(3,5)$, write

$$
\begin{aligned}
& \mathbb{E}[\xi(h)]=\tanh (\beta)(B+\mathbb{E}[K] \mathbb{E}[\xi(h)]) \\
& \\
& +\mathbb{E}\left[\xi\left(B+\sum_{i=1}^{K} \xi\left(h_{i}\right)\right)-\tanh (\beta)(B+K \mathbb{E}[\xi(h)])\right] .
\end{aligned}
$$

By taking degrees into account precisely, we can show that

$$
\mathbb{E}[\xi(h)] \approx \tanh (\beta)(B+\mathbb{E}[K] \mathbb{E}[\xi(h)])-C \mathbb{E}[\xi(h)]^{\tau-2}
$$

yielding

$$
\beta=1 /(\tau-3) \quad \text { and } \quad \delta=\tau-2
$$

Conclusion

Theorem (DGvdH, '12)

	$\mathbb{E}\left[K^{3}\right]<\infty$	$\tau \in(3,4) \cup(4,5)$
β	$1 / 2$	$1 /(\tau-3)$
δ	3	$\tau-2$
γ	1	1

Conclusion

Theorem (DGvdH, '12)

	$\mathbb{E}\left[K^{3}\right]<\infty$	$\tau \in(3,4) \cup(4,5)$
β	$1 / 2$	$1 /(\tau-3)$
δ	3	$\tau-2$
γ	1	1

Conjectured that also

	$\mathbb{E}\left[K^{3}\right]<\infty$	$\tau \in(3,4) \cup(4,5)$
$\boldsymbol{\gamma}^{\prime}$	1	1
α^{\prime}	0	$(\tau-5) /(\tau-3)$

