Ising critical exponents on power-law random graphs

Sander Dommers

Joint work with:

Cristian Giardinà

Remco van der Hofstad

Ising model

Ising model: paradigm model in statistical physics for *cooperative* behavior.

When studied on complex networks it can model for example *opinion spreading* in society.

We will model complex networks with power-law random graphs.

What are effects of *structure* of complex networks on *behavior* of Ising model?

Power-law random graphs

In the *configuration model (CM)* a graph $G_n = (V_n = [n], E_n)$ is constructed as follows.

- ▶ Let *D* have a certain distribution (the *degree distribution*);
- ▶ Assign D_i half-edges to each vertex $i \in [n]$, where D_i are i.i.d. like D (Add one half-edge to last vertex when the total number of half-edges is odd);
- Attach first half-edge to another half-edge uniformly at random;
- Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

$$ck^{-\tau} \leq \mathbb{P}[D=k] \leq Ck^{-\tau}, \qquad \tau > 2.$$

Start from random vertex, which has degree distributed as D, and look at its neighbors.

Local structure configuration model for $\tau > 2$

Start from random vertex, which has degree distributed as D, and look at its neighbors.

Locally tree-like structure: a branching process with offspring *D* in first generation and *K* in further generations. Also, *uniformly sparse*.

Definition of the Ising model

On a graph G_n , the *ferromagnetic Ising model* is given by the following Boltzmann distribution over $\sigma \in \{-1, +1\}^n$,

$$\mu(\sigma) = \frac{1}{Z_n(\beta, B)} \exp \left\{ \beta \sum_{(i,j) \in E_n} \sigma_i \sigma_j + B \sum_{i \in [n]} \sigma_i \right\},\,$$

where

- $\beta \geq 0$ is the inverse temperature;
- B is the external magnetic field;
- $ightharpoonup Z_n(\beta, B)$ is a normalization factor (the *partition function*), i.e.,

$$Z_n(\beta, B) = \sum_{\sigma \in \{-1,1\}^n} \exp \left\{ \beta \sum_{(i,j) \in E_n} \sigma_i \sigma_j + B \sum_{i \in [n]} \sigma_i \right\}.$$

Theorem (Dembo, Montanari, '10)

If $\mathbb{E}[K] < \infty$, then the pressure per particle in the thermodynamic limit, a.s.,

$$\lim_{n\to\infty}\frac{1}{n}\log Z_n(\beta,B)=\varphi(\beta,B),$$

for some explicit function $\varphi(\beta, B)$.

Theorem (Dembo, Montanari, '10)

If $\mathbb{E}[K] < \infty$, then the pressure per particle in the thermodynamic limit, a.s.,

$$\lim_{n\to\infty}\frac{1}{n}\log Z_n(\beta,B)=\varphi(\beta,B),$$

for some explicit function $\varphi(\beta, B)$.

Theorem (DGvdH, '10)

The same holds for $\tau > 2$.

Define the *magnetization* as

$$M(\beta, B) \equiv \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \langle \sigma_i \rangle_{\mu},$$

where $\langle \cdot \rangle_{\mu}$ denotes the expectation under the Ising measure $\mu.$

The *spontaneous magnetization* is then defined as

$$M(\beta, 0^+) \equiv \lim_{B \searrow 0} M(\beta, B).$$

The *critical temperature* β_c equals

$$\beta_c \equiv \inf\{\beta : M(\beta, 0^+) > 0\}.$$

Critical temperature

Theorem (Lyons, '89, DGvdH, '12)

The critical temperature β_c equals, a.s.,

$$\beta_c = \operatorname{atanh}(1/\mathbb{E}[K]).$$

Note that, for $\tau \in (2,3)$, we have $\mathbb{E}[K] = \infty$, so that $\beta_c = 0$.

We study *critical exponents* for $\tau > 3$.

Critical exponents

The *critical exponents* are defined as:

$$M(\beta, 0^+) \simeq (\beta - \beta_c)^{\beta},$$
 for $\beta \searrow \beta_c$;
 $M(\beta_c, B) \simeq B^{1/\delta},$ for $B \searrow 0$;
 $\chi(\beta, 0^+) \simeq (\beta - \beta_c)^{-\gamma},$ for $\beta \nearrow \beta_c$,

where $\chi(\beta, B) = \frac{\partial}{\partial B} M(\beta, B)$.

Theorem (DGvdH, '12)

	$\mathbb{E}[K^3] < \infty$	$\tau \in (3,4) \cup (4,5)$
β	1/2	$1/(\tau-3)$
δ	3	$\tau - 2$
γ	1	1

Root magnetization on a tree:

Effective field h* is unique solution to recursion

$$h^{(t+1)} \stackrel{d}{=} B + \sum_{i=1}^{K_t} \xi(h_i^{(t)}),$$

where,

$$\xi(h) = \operatorname{atanh}(\operatorname{tanh}(\beta)\operatorname{tanh}(h)).$$

The magnatization equals

$$M(\beta, B) = \mathbb{E}\left[\tanh\left(B + \sum_{i=1}^{D} \xi(h_i)\right)\right]$$
$$\approx B + \mathbb{E}[D]\mathbb{E}[\xi(h)].$$

Hence, same scaling for $M(\beta, B)$ and $\mathbb{E}[\xi(h)]$.

Sketch of proof

Taylor expansion of $\mathbb{E}[\xi(h)]$:

$$\mathbb{E}[\xi(h)] = \mathbb{E}\left[\xi\left(B + \sum_{i=1}^{K} \xi(h_i)\right)\right]$$

$$\approx \tanh(\beta)\mathbb{E}[h] - C\mathbb{E}[h^3]$$

$$= \tanh(\beta)\left(B + \mathbb{E}[K]\mathbb{E}[\xi(h)]\right) - C\mathbb{E}\left[\left(B + \sum_{i=1}^{K} \xi(h_i)\right)^3\right].$$

Sketch of proof

Taylor expansion of $\mathbb{E}[\xi(h)]$:

$$\mathbb{E}[\xi(h)] = \mathbb{E}\left[\xi\left(B + \sum_{i=1}^{K} \xi(h_i)\right)\right]$$

$$\approx \tanh(\beta)\mathbb{E}[h] - C\mathbb{E}[h^3]$$

$$= \tanh(\beta)\left(B + \mathbb{E}[K]\mathbb{E}[\xi(h)]\right) - C\mathbb{E}\left[\left(B + \sum_{i=1}^{K} \xi(h_i)\right)^3\right].$$

Only allowed for $\mathbb{E}[K^3] < \infty$. In that case

$$\mathbb{E}[\xi(h)] \approx \tanh(\beta)B + \tanh(\beta)\mathbb{E}[K]\mathbb{E}[\xi(h)] - C\mathbb{E}[\xi(h)]^3.$$

For $\mathbb{E}[K^3] < \infty$,

$$\mathbb{E}[\xi(h)] \approx \tanh(\beta)B + \tanh(\beta)\mathbb{E}[K]\mathbb{E}[\xi(h)] - C\mathbb{E}[\xi(h)]^{3}.$$

For $\beta > \beta_c$ and $B \searrow 0$,

$$1 \approx \tanh(\beta)\mathbb{E}[K] - C\mathbb{E}[\xi(h_0)]^2$$
.

Hence,

$$\mathbb{E}[\xi(h_0)] \approx \left(\frac{\tanh(\beta)\mathbb{E}[K]-1}{C}\right)^{1/2} \asymp (\beta-\beta_c)^{1/2},$$

thus

$$\beta = 1/2$$
.

For $\mathbb{E}[K^3] < \infty$,

$$\mathbb{E}[\xi(h)] \approx \tanh(\beta)B + \tanh(\beta)\mathbb{E}[K]\mathbb{E}[\xi(h)] - C\mathbb{E}[\xi(h)]^{3}.$$

For $\beta = \beta_c$ and B > 0,

$$\mathbb{E}[\xi(h_c)] \approx \tanh(\beta_c)B + 1\mathbb{E}[\xi(h_c)] - C\mathbb{E}[\xi(h_c)]^3.$$

Hence,

$$\mathbb{E}[\xi(h_c)] \approx \left(\frac{\tanh(\beta_c)B}{C}\right)^{1/3} \asymp B^{1/3},$$

thus

$$\delta = 3$$
.

For $\tau \in (3, 5)$, write

$$\mathbb{E}[\xi(h)] = \tanh(\beta) (B + \mathbb{E}[K]\mathbb{E}[\xi(h)]) + \mathbb{E}\left[\xi\left(B + \sum_{i=1}^{K} \xi(h_i)\right) - \tanh(\beta) (B + K\mathbb{E}[\xi(h)])\right].$$

By taking degrees into account precisely, we can show that

$$\mathbb{E}[\xi(h)] \approx \tanh(\beta) \left(B + \mathbb{E}[K]\mathbb{E}[\xi(h)] \right) - C\mathbb{E}[\xi(h)]^{\tau-2},$$

yielding

$$\beta = 1/(\tau - 3)$$
 and $\delta = \tau - 2$.

Theorem (DGvdH, '12)

	$\mathbb{E}[K^3] < \infty$	$\tau \in (3,4) \cup (4,5)$
β	1/2	$1/(\tau - 3)$
δ	3	$\tau - 2$
γ	1	1

Theorem (DGvdH, '12)

	$\mathbb{E}[K^3] < \infty$	$\tau \in (3,4) \cup (4,5)$
β	1/2	$1/(\tau-3)$
δ	3	$\tau - 2$
γ	1	1

Conjectured that also

	$\mathbb{E}[K^3] < \infty$	$\tau \in (3,4) \cup (4,5)$
γ'	1	1
α'	0	$(\tau-5)/(\tau-3)$