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Inhomogeneous Curie-Weiss model

Fix a sequence of positive weights (w;);>1
Let ¢, be the sum of the first n weights: ¢, = > ", w;
Let o be a spin configuration o = (01,...,0,) € {—1,41}"

Define the Hamiltonian

2£ ZW,WJU,OJ—FhZU,—% (ZW,O’,) +hZa,

i,j=1

where 3 > 0 is inverse temperature and h the external field
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Inhomogeneous Curie-Weiss model (cont.)

For Hamiltonian

define Gibbs measure of ICW as

1
e—H,,(U)

(o) = 7

n

where Z, is the normalization (partition function)

Z e—Hn(a)

oe{-1,+1}"

Note that this is the standard Curie-Weiss model if w =1
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Assumptions on weights

Let V,, ~ Uniform{1,...,n} and W, = wy,

Assume there exists a random variable W such that, as n — oo,
. D
(i) W, — W

(i) BEW7] =5 3 wf = EW?] < o0
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Generalized random graphs

The generalized random graph is defined as follows
Assign to each vertex i € {1,...,n} a weight w;

For each pair of vertices /, j draw an edge between them with probability

Wi w; Wi w;
Pij = ~
" ln+ Wi wj ln

independently of everything else

Denote the resulting edge set by E, and
the expectation of such random graphs by Q,
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Annealed Ising model on GRGs

Annealed Gibbs measure

Qn (eXP {B 2 (i)eE, %i0) T h 2 Ui})
B @n(Za,)

Qn (exp {ﬁ 2icj WigeEnoioj +h 32 J"})
- Q@n(Za,)

vn(o

Because of independence of edges expectation factorizes

Hence we should compute

Q, (eﬂﬂ{(f,j)esn}giaj)
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Annealed Ising model on GRGs

(&P _
Q. (eﬁﬂ{(f,j)eE,,}o,-oj) _ piJeBUfo + (1 - Pi,j) 1= elog<1+p,,J(e J 1))

Using that o0} can only take values —1 and +1 and writing

Ligio=t1) = %(1 + ojoj)

we can write

Q. (eﬂﬂ{(i,j)eEn}UiUf> _ elog(1+pij(e”~1)) 3 (1+0i0))+log(1+p1 (e ~1)) 3 (1~0i0))
C’.’je%(Iog(1+p;7j(eﬂ71))flog(1+p;,j(e_ﬁfl)))a,-aj

8 B 5 o
(Pi,je 5 JFO(P;,J'))UIUJ iy sinh B oio;j

= Cije ~ Cje
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Annealed Ising model on GRGs

Using

Qn <eﬂﬂ{(i,j)6En}o-io—j> ~ Ci’jeslnhﬁ Tn O',O'J

we get

Qn (eXp {6 2icj Wigeenoioj + h 32 ""D

QH(ZGn)
exp { Sizr?nﬁ o7 j=1 wiwjoioj + h 3o, Ui}
~ Z,
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Annealed Ising model on GRGs

Using

P
Q, <eﬂﬂ{(i,j)eEn}0in) ~ (_‘i’jes'"hﬁfgl%

we get

Qn (eXp {6 2icj Wigeenoioj + h 32 ""D

vn(o) =

Qn(ZGn)
exp { Sy wiwjoio + h YT Ui}
Zn

~
~

The same as j,(0) with [ replaced by sinh 3
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Solution of the model

Theorem (GGvdHP, '16)
For all 3 >0 and h € R the pressure equals

z° 15}
nlrgoglogZ —Iog2—sup{2—E[|ogcosh< E[W]Wz+h> }

Proof uses Hubbard-Stratonovich transform and large deviations of
normal random variables

The optimizer satisfies

* B B
z*=E tanh( E[W]WZ —i—h) E[W]W]

If h # 0 this has unique solution with same sign as h
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Magnetization

Define the magnetization as

erty (Slawio) thSlioi 5

Z( Za> 7 = 55082,

Hence one can expect that

E[W

n—o0 n—oo N

lim I\/I,,(ﬁ,h)—2 lim flogZ,,—E tanh( b ]Wz +h)

This is indeed true for h # 0 (GGvdHP, '16)
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Critical temperature

To determine critical temperature take limit h — 0 of fixed point equation

zy = E |tanh (”E[BW]WZE)) IE[BW]W] =: f(zg)

f(z) is increasing, bounded and concave for positive z

f(Z)% f(z)%
f'(0) <1 f(0) > 1
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Critical temperature

To determine critical temperature take limit h — 0 of fixed point equation

zy = E |tanh (”E[ﬁM/]WZS> IE[BW]W] =: f(zg)

We can compute
E[W?]

0) = A g

and hence
_ E[w]

e = gy

For 6 > (¢

M(B,0") = A@oni@o M(8B, h) > 0.
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Critical exponents

The critical exponents for the magnetization are defined as

M(8,0%) = (8 - Bc)° for 5\ Be
M(Be, h) =< h'/° for h ™\, 0

Furthermore, we can define the susceptibility as

0

X(8.h) = 2 M(B. h)

Its critical exponents are
X(8,0%) = (B = B)
X(8,07) = (8= B)7

’
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Additional weight assumptions

We distinguish two cases
(i) E[W*] < o0

(i) W obeys a power law with exponent T € (3,5], i.e., there exist
constants Cyy > ¢y > 0 and wy > 0 such that

cww D < PIW > w] < Coyw (1) Yw > wy

Bell Curve

Most nodes have
the same number of links

No highly
connected nodes

Number of nodes with k links

Number of nodes with k links

Power Law Distribution

Very many nodes
with only a few links

A few hubs with
large number of links
\

o I
VA AAr T X

Number of links (k)
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Critical exponents for ICW

Theorem (DGGvdHP, '15)

E[W* < oo

1/2
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Critical exponents for ICW

Theorem (DGGvdHP, '15)
E[W* < oo

6. 1/2
B 3

v, 1

For 7 = 5 we have the following logarithmic corrections

B —Be h )1/3

M(3.0%) = ( log(1/h)

1/2
G-y MOem=(
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Mean-field exponents

The values
B=1/2 0=3 v,y =1
are called mean-field values. They are the same for
» Curie-Weiss model

> Ising model on Z9,d > 4
(8,6 : Aizenman, Fernandez, '86, « : Aizenman, '82)

» Many other models

Note that these values do not hold for 7 < 5

Despite the fact that this is still a mean-field model!
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Sketch of proof

Note that

M(B,h) =E tanh( E[f/\/] Wz*+h> ~ +/BE[W]z* + h.

Hence, same scaling for M(3, h) and z*

Using Taylor expansion tanh(x) ~ x — %x3

_ B " B
=K tanh( E[W]WZ —i—h) IE[W]W]

W2 2E w4
W”*ﬁxa[[vv]] ) ﬁsnz{vv]z] N
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Sketch of proof

Note that

M(B,h) =E tanh( E[?/V] Wz* +h> ~ \/BE[W]z* + h.

Hence, same scaling for M(3, h) and z*

Using Taylor expansion tanh(x) ~ x — %x3

_ s B
=K tanh( E[W]WZ —i—h) IE[W]W]

W2 2 EIWA
Wh+5E[W]] ) ﬁsnz{vv]z] N

Only allowed for E[W*] < oo !
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Critical exponent 3

For E[W*] <

E[W?] - BPEWY
"R VEEWIh B 3 pwR

For 5 > (. and h ™\, 0

L EWR BREWY

E[W] 3 E[W]?

_(ﬁ—&)i
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Critical exponent

For E[W*] <

BEW] E[W?] - BPEWY
BE[Wh—I_ﬁE[W] _?E[WPZ3

For 5 = (. and h >0

.  BZE[WA] o
2~ VEEWI+1- 2" - g

z* ~ Ch'/3

0=3
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The case 7 € (3,5)

For 7 € (3,5) write

=/ PE[W] h+5E[W2]] * Htanh( b Wz* —i—h)

E[W]

_(h+ E[@V]Wz*)} -l

By splitting analysis for small and large W we can show that

%Wﬂﬁﬂm]l i

yielding
B=1/(tr—3) and d=17-2
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Truncated moments

Fora>r—-1

L
E[Waﬂ{wgg}] -~ / wiw Tdw ~ ga—(r—l)
1

Similarly, for a <7 —1
E[W T ywsp] ~ / w?w Tdw ~ 2~ (771)
¢

Optimal choice is ¢/ = 1/z*
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Use of truncated moments

For small W use Taylor expansion as before

Then estimate terms like

IE[W4]I{W§1/Z*}]Z*3 -~ Z*—(4—(T—1))Z*3 _
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Use of truncated moments

For small W use Taylor expansion as before

Then estimate terms like

E[W41{W§1/z*}]2*3 -~ Z*—(4—(T—1))Z*3 _

For large W use simpler bounds e.g. a constant

Then estimate terms like

*—(2—(7—1))2* — T2

E[WZ]I{W>1/Z*}]Z* ~z
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Central limit theorem

Let S, be the total spin S, = >"" ;| 0;

Theorem (GGvdHP, '16)
For3>0,h#0and for0 < (3 < f3c,h=0

Sn %(Sn) 2} ‘/\/'(07 X)

Proved by analyzing cumulant generating function

tSh )

1
Cn(t) - " log Mn(e

and its first two derivatives
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Central limit theorem

Let S, be the total spin S, = >"" ;| 0;

Theorem (GGvdHP, '16)
For3>0,h#0and for0 < (3 < f3c,h=0

Sn %(Sn) 2} ‘/\/'(07 X)

Proved by analyzing cumulant generating function

tSnh )

1
Cn(t) - " log Mn(e

and its first two derivatives

Does not hold for 8 = 3.,h =0
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Additional weight assumptions

We distinguish two cases
() E[W4] - 1 ZIG[H Wi4 - E[W4] < 00

(ii) the weights are chosen according the deterministic sequence

n)l/(f—l)

Wi = Cyw (f-
]

for some constant ¢, > 0 and 7 € (3,5)

The latter is a stronger assumption on the power-law behavior of (w;);>1

Sander Dommers — Ruhr-Universitit Bochum



Non-classical limit theorem

Theorem (DGGvdHP, '15)

Let 3 = (., h = 0. Then, there exists a random variable X such that

Sn D
o) X

where X has density proportional to exp(—f(x)) with

when E[W*] < oo

2
X /'_1/(7_1)) — log cosh (;—jx i‘”“‘”))
when 7 € (3,5)

In both cases there exists an explicit constant C > 0 such that
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Sketch of proof

It suffices to show that exponential moments converge

s (oo {rtin}) o

Use Hubbard-Stratonovich transform (e”/2 = E[et?] with Z ~ A/(0, 1))
to write

__r 5o B 2 oo ox
Zené/(ém 2190 g3, (S wior)” _ Cn/ e ”G"(n1/<a+1)”>dx
o —00

Wlth X2 ﬁ r
Gn(x,r):2—IE[|ogcosh< ]Wx+n5/(5+1)>]

The result then follows by using the Taylor expansion (for E[W/*] < o0)

2

X 1
[ hx~ o — —x*
og cosh x 5 12X
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Related / future research

Results on critical behavior (DGvdH14) and CLTs (GGvdHP15) also hold
in guenched model

What about non-classical limit theorem in quenched model?
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Related / future research

Results on critical behavior (DGvdH14) and CLTs (GGvdHP15) also hold
in guenched model

What about non-classical limit theorem in quenched model?

What about rates of convergence for limit theorems?
Perhaps we can use Stein’s method for exchangeable pairs

Successfully used for Curie-Weiss model in Eichelsbacher, Lowe 2010

The solution of the model and in several cases the critical behavior can
also be derived for compact spins, e.g., continuous spins on [—1, 1]
D., Kiilske, Schriever 2016
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