RUHR **BOCHUM**

Critical behavior of the inhomogeneous Curie-Weiss model

Sander Dommers

Joint work with

Cristian Giardinà, Claudio Giberti, Remco van der Hofstad and Maria Luisa Prioriello

Overview

- 1. Inhomogeneous Curie-Weiss model (ICW)
- 2. Motivation via random graphs
- 3. Critical exponents
- 4. Non-classical limit theorem

Overview

- 1. Inhomogeneous Curie-Weiss model (ICW)
- 2. Motivation via random graphs
- 3. Critical exponents
- 4. Non-classical limit theorem

Inhomogeneous Curie-Weiss model

Fix a sequence of positive weights $(w_i)_{i\geq 1}$

Let ℓ_n be the sum of the first n weights: $\ell_n = \sum_{i=1}^n w_i$

Let σ be a spin configuration $\sigma = (\sigma_1, \dots, \sigma_n) \in \{-1, +1\}^n$

Define the Hamiltonian

$$-H_n(\sigma) = \frac{\beta}{2\ell_n} \sum_{i,j=1}^n w_i w_j \sigma_i \sigma_j + h \sum_{i=1}^n \sigma_i = \frac{\beta}{2\ell_n} \left(\sum_{i=1}^n w_i \sigma_i \right)^2 + h \sum_{i=1}^n \sigma_i$$

where $\beta \geq 0$ is *inverse temperature* and h the *external field*

For Hamiltonian

$$-H_n(\sigma) = \frac{\beta}{2\ell_n} \left(\sum_{i=1}^n w_i \sigma_i \right)^2 + h \sum_{i=1}^n \sigma_i$$

define Gibbs measure of ICW as

$$\mu_n(\sigma) = \frac{1}{Z_n} e^{-H_n(\sigma)}$$

where Z_n is the normalization (partition function)

$$Z_n = \sum_{\sigma \in \{-1,+1\}^n} e^{-H_n(\sigma)}$$

Note that this is the standard Curie-Weiss model if $w \equiv 1$

Assumptions on weights

Let
$$V_n \sim \textit{Uniform}\{1,\ldots,n\}$$
 and $W_n = w_{V_n}$

Assume there exists a random variable W such that, as $n \to \infty$,

- (i) $W_n \stackrel{\mathcal{D}}{\longrightarrow} W$
- (ii) $\mathbb{E}[W_n^2] = \frac{1}{n} \sum_{i=1}^n w_i^2 \to \mathbb{E}[W^2] < \infty$

Overview

- 1. Inhomogeneous Curie-Weiss model (ICW)
- 2. Motivation via random graphs
- 3. Critical exponents
- 4. Non-classical limit theorem

Generalized random graphs

The *generalized random graph* is defined as follows

Assign to each vertex $i \in \{1, \ldots, n\}$ a weight w_i

For each pair of vertices i, j draw an edge between them with probability

$$p_{i,j} = \frac{w_i w_j}{\ell_n + w_i w_j} \left(\approx \frac{w_i w_j}{\ell_n} \right)$$

independently of everything else

Denote the resulting edge set by E_n and the expectation of such random graphs by Q_n

Annealed Gibbs measure

$$\nu_{n}(\sigma) = \frac{Q_{n}\left(\exp\left\{\beta \sum_{(i,j)\in E_{n}} \sigma_{i}\sigma_{j} + h \sum_{i=1}^{n} \sigma_{i}\right\}\right)}{Q_{n}(Z_{G_{n}})}$$

$$= \frac{Q_{n}\left(\exp\left\{\beta \sum_{i< j} \mathbb{1}_{\{(i,j)\in E_{n}\}} \sigma_{i}\sigma_{j} + h \sum_{i=1}^{n} \sigma_{i}\right\}\right)}{Q_{n}(Z_{G_{n}})}$$

Because of independence of edges expectation factorizes

Hence we should compute

$$Q_n\left(e^{\beta\mathbb{1}_{\{(i,j)\in E_n\}}\sigma_i\sigma_j}\right)$$

Annealed Ising model on GRGs

$$Q_n\left(e^{\beta\mathbb{1}_{\{(i,j)\in E_n\}}\sigma_i\sigma_j}\right)=p_{i,j}e^{\beta\sigma_i\sigma_j}+\left(1-p_{i,j}\right)\cdot 1=e^{\log\left(1+p_{i,j}\left(e^{\beta\sigma_i\sigma_j}-1\right)\right)}$$

Using that $\sigma_i\sigma_j$ can only take values -1 and +1 and writing

$$\mathbb{1}_{\{\sigma_i\sigma_j=\pm 1\}}=\frac{1}{2}(1\pm\sigma_i\sigma_j)$$

we can write

$$\begin{split} Q_n\left(e^{\beta\mathbb{1}_{\{(i,j)\in E_n\}}\sigma_i\sigma_j}\right) &= e^{\log\left(1+p_{i,j}(e^\beta-1)\right)\frac{1}{2}(1+\sigma_i\sigma_j)+\log\left(1+p_{i,j}(e^{-\beta}-1)\right)\frac{1}{2}(1-\sigma_i\sigma_j)} \\ &= C_{i,j}e^{\frac{1}{2}\left(\log\left(1+p_{i,j}(e^\beta-1)\right)-\log\left(1+p_{i,j}(e^{-\beta}-1)\right)\right)\sigma_i\sigma_j} \\ &= C_{i,j}e^{\left(p_{i,j}\frac{e^\beta-e^{-\beta}}{2}+\mathcal{O}(p_{i,j}^2)\right)\sigma_i\sigma_j} \approx C_{i,j}e^{\frac{w_iw_j}{\ell_n}\sinh\beta\sigma_i\sigma_j} \end{split}$$

Using

$$Q_n\left(e^{\beta\mathbb{1}_{\{(i,j)\in E_n\}}\sigma_i\sigma_j}\right)\approx C_{i,j}e^{\sinh\beta\frac{w_iw_j}{\ell_n}\sigma_i\sigma_j}$$

we get

$$\nu_{n}(\sigma) = \frac{Q_{n}\left(\exp\left\{\beta \sum_{i < j} \mathbb{1}_{\{(i,j) \in E_{n}\}} \sigma_{i} \sigma_{j} + h \sum_{i=1}^{n} \sigma_{i}\right\}\right)}{Q_{n}(Z_{G_{n}})}$$

$$\approx \frac{\exp\left\{\frac{\sinh \beta}{2\ell_{n}} \sum_{i,j=1}^{n} w_{i} w_{j} \sigma_{i} \sigma_{j} + h \sum_{i=1}^{n} \sigma_{i}\right\}}{Z_{n}}$$

Using

$$Q_n\left(e^{\beta\mathbb{1}_{\{(i,j)\in E_n\}}\sigma_i\sigma_j}\right)\approx C_{i,j}e^{\sinh\beta\frac{w_iw_j}{\ell_n}\sigma_i\sigma_j}$$

we get

$$\nu_{n}(\sigma) = \frac{Q_{n}\left(\exp\left\{\beta \sum_{i < j} \mathbb{1}_{\{(i,j) \in E_{n}\}} \sigma_{i} \sigma_{j} + h \sum_{i=1}^{n} \sigma_{i}\right\}\right)}{Q_{n}(Z_{G_{n}})}$$

$$\approx \frac{\exp\left\{\frac{\sinh \beta}{2\ell_{n}} \sum_{i,j=1}^{n} w_{i} w_{j} \sigma_{i} \sigma_{j} + h \sum_{i=1}^{n} \sigma_{i}\right\}}{Z_{n}}$$

The same as $\mu_n(\sigma)$ with β replaced by $\sinh \beta$

Overview

- 1. Inhomogeneous Curie-Weiss model (ICW)
- 2. Motivation via random graphs
- 3. Critical exponents
- 4. Non-classical limit theorem

Solution of the model

Theorem (GGvdHP, '16)

For all $\beta \geq 0$ and $h \in \mathbb{R}$ the pressure equals

$$\lim_{n\to\infty} \frac{1}{n} \log Z_n = \log 2 - \sup_{z} \left\{ \frac{z^2}{2} - \mathbb{E} \left[\log \cosh \left(\sqrt{\frac{\beta}{\mathbb{E}[W]}} Wz + h \right) \right] \right\}$$

Proof uses Hubbard-Stratonovich transform and large deviations of normal random variables

The optimizer satisfies

$$z^{\star} = \mathbb{E}\left[anh\left(\sqrt{rac{eta}{\mathbb{E}[W]}}Wz^{\star} + h
ight)\sqrt{rac{eta}{\mathbb{E}[W]}}W
ight]$$

If $h \neq 0$ this has unique solution with same sign as h

Magnetization

Define the *magnetization* as

$$M_n(\beta, B) := \mu_n \left(\frac{1}{n} \sum_{i=1}^n \sigma_i \right)$$

$$= \sum_{\sigma} \left(\frac{1}{n} \sum_{i=1}^n \sigma_i \right) \frac{e^{\frac{\beta}{2\ell_n} \left(\sum_{i=1}^n w_i \sigma_i \right)^2 + h \sum_{i=1}^n \sigma_i}}{Z_n} = \frac{\partial}{\partial h} \frac{1}{n} \log Z_n$$

Hence one can expect that

$$\lim_{n\to\infty} M_n(\beta,h) = \frac{\partial}{\partial h} \lim_{n\to\infty} \frac{1}{n} \log Z_n = \mathbb{E} \left[\tanh \left(\sqrt{\frac{\beta}{\mathbb{E}[W]}} W z^* + h \right) \right]$$

This is indeed true for $h \neq 0$ (GGvdHP, '16)

Critical temperature

To determine critical temperature take limit $h \rightarrow 0$ of fixed point equation

$$z_0^\star = \mathbb{E}\left[anh\left(\sqrt{rac{eta}{\mathbb{E}[W]}}Wz_0^\star
ight)\sqrt{rac{eta}{\mathbb{E}[W]}}W
ight] =: f(z_0^\star)$$

f(z) is increasing, bounded and concave for positive z

Critical temperature

To determine critical temperature take limit $h \to 0$ of fixed point equation

$$z_0^\star = \mathbb{E}\left[anh\left(\sqrt{rac{eta}{\mathbb{E}[W]}}Wz_0^\star
ight)\sqrt{rac{eta}{\mathbb{E}[W]}}W
ight] =: f(z_0^\star)$$

We can compute

$$f'(0) = \beta \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]}$$

and hence

$$\beta_c = \frac{\mathbb{E}[W]}{\mathbb{E}[W^2]}$$

For $\beta > \beta_c$

$$M(\beta, 0^+) := \lim_{h \searrow 0} \lim_{n \to \infty} M_n(\beta, h) > 0.$$

Critical exponents

The critical exponents for the magnetization are defined as

$$M(\beta, 0^+) \simeq (\beta - \beta_c)^{\beta}$$
 for $\beta \searrow \beta_c$
 $M(\beta_c, h) \simeq h^{1/\delta}$ for $h \searrow 0$

Furthermore, we can define the *susceptibility* as

$$\chi(\beta,h) = \frac{\partial}{\partial h} M(\beta,h)$$

Its critical exponents are

$$\chi(\beta, 0^+) \simeq (\beta_c - \beta)^{-\gamma}$$
 for $\beta \nearrow \beta_c$
 $\chi(\beta, 0^+) \simeq (\beta - \beta_c)^{-\gamma'}$ for $\beta \searrow \beta_c$

Additional weight assumptions

We distinguish two cases

- (i) $\mathbb{E}[W^4] < \infty$
- (ii) W obeys a power law with exponent $\tau \in (3, 5]$, i.e., there exist constants $C_W > c_W > 0$ and $w_0 > 0$ such that

$$c_W w^{-(\tau-1)} \le \mathbb{P}[W > w] \le C_W w^{-(\tau-1)} \qquad \forall w > w_0$$

Critical exponents for ICW

Theorem (DGGvdHP, '15)

	$\mathbb{E}[W^4] < \infty$	$ au\in (3,5)$
$\boldsymbol{\beta}$	1/2	$1/(\tau-3)$
δ	3	au-2
$oldsymbol{\gamma},oldsymbol{\gamma'}$	1	1

Critical exponents for ICW

Theorem (DGGvdHP, '15)

	$\mathbb{E}[W^4] < \infty$	$ au\in (3,5)$
$\boldsymbol{\beta}$	1/2	$1/(\tau - 3)$
δ	3	$\tau - 2$
$oldsymbol{\gamma},oldsymbol{\gamma'}$	1	1

For $\tau = 5$ we have the following logarithmic corrections

$$M(\beta, 0^+) \simeq \left(\frac{\beta - \beta_c}{\log 1/(\beta - \beta_c)}\right)^{1/2} \qquad M(\beta_c, h) \simeq \left(\frac{h}{\log (1/h)}\right)^{1/3}$$

Mean-field exponents

The values

$$\boldsymbol{\beta} = 1/2$$
 $\boldsymbol{\delta} = 3$ $\boldsymbol{\gamma}, \boldsymbol{\gamma'} = 1$

are called *mean-field* values. They are the same for

- Curie-Weiss model
- ▶ Ising model on \mathbb{Z}^d , d > 4(β , δ : Aizenman, Fernández, '86, γ : Aizenman, '82)
- Many other models

Note that these values do *not* hold for $\tau \leq 5$

Despite the fact that this is still a mean-field model!

Sketch of proof

Note that

$$M(\beta, h) = \mathbb{E}\left[\tanh\left(\sqrt{\frac{\beta}{\mathbb{E}[W]}}Wz^* + h\right)\right] \approx \sqrt{\beta\mathbb{E}[W]}z^* + h.$$

Hence, same scaling for $M(\beta, h)$ and z^*

Using Taylor expansion $tanh(x) \approx x - \frac{1}{3}x^3$

$$\begin{split} z^{\star} &= \mathbb{E}\left[\tanh\left(\sqrt{\frac{\beta}{\mathbb{E}[W]}}Wz^{\star} + h\right)\sqrt{\frac{\beta}{\mathbb{E}[W]}}W\right] \\ &\approx \sqrt{\beta\mathbb{E}[W]}h + \beta\frac{\mathbb{E}[W^2]}{\mathbb{E}[W]}z^{\star} - \frac{\beta^2}{3}\frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^2}z^{\star 3} \end{split}$$

Sketch of proof

Note that

$$M(\beta,h) = \mathbb{E}\left[\tanh\left(\sqrt{rac{eta}{\mathbb{E}[W]}}Wz^{\star} + h
ight)
ight] pprox \sqrt{eta\mathbb{E}[W]}z^{\star} + h.$$

Hence, same scaling for $M(\beta, h)$ and z^*

Using Taylor expansion $tanh(x) \approx x - \frac{1}{3}x^3$

$$\begin{split} z^{\star} &= \mathbb{E}\left[\tanh\left(\sqrt{\frac{\beta}{\mathbb{E}[W]}}Wz^{\star} + h\right)\sqrt{\frac{\beta}{\mathbb{E}[W]}}W\right] \\ &\approx \sqrt{\beta\mathbb{E}[W]}h + \beta\frac{\mathbb{E}[W^2]}{\mathbb{E}[W]}z^{\star} - \frac{\beta^2}{3}\frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^2}z^{\star 3} \end{split}$$

Only allowed for $\mathbb{E}[W^4] < \infty$!

Critical exponent β

For $\mathbb{E}[W^4] < \infty$

$$z^* \approx \sqrt{\beta \mathbb{E}[W]} h + \beta \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]} z^* - \frac{\beta^2}{3} \frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^2} z^{*3}$$

For $\beta > \beta_c$ and $h \searrow 0$

$$1 \approx \beta \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]} - \frac{\beta^2}{3} \frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^2} z^{*2}$$

Hence

$$z^* pprox \left(\frac{\beta \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]} - 1}{C} \right)^{\frac{1}{2}} = \left(\frac{\beta - \beta_c}{\beta_c C} \right)^{\frac{1}{2}}$$

thus

$$\beta = 1/2$$

Critical exponent δ

For $\mathbb{E}[W^4] < \infty$

$$z^* \approx \sqrt{\beta \mathbb{E}[W]} h + \beta \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]} z^* - \frac{\beta^2}{3} \frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^2} z^{*3}$$

For $\beta = \beta_c$ and h > 0

$$z^* \approx \sqrt{\beta_c \mathbb{E}[W]} h + 1 \cdot z^* - \frac{\beta_c^2}{3} \frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^2} z^{*3}$$

Hence

$$z^* \approx C h^{1/3}$$

thus

$$\delta = 3$$

The case $\tau \in (3,5)$

For $\tau \in (3,5)$ write

$$z^{*} = \sqrt{\beta \mathbb{E}[W]} h + \beta \frac{\mathbb{E}[W^{2}]}{\mathbb{E}[W]} z^{*} + \mathbb{E}\left[\left\{\tanh\left(\sqrt{\frac{\beta}{\mathbb{E}[W]}}Wz^{*} + h\right) - \left(h + \sqrt{\frac{\beta}{\mathbb{E}[W]}}Wz^{*}\right)\right\}\sqrt{\frac{\beta}{\mathbb{E}[W]}}W\right]$$

By splitting analysis for small and large W we can show that

$$z^* \approx \sqrt{\beta \mathbb{E}[W]} h + \beta \frac{\mathbb{E}[W^2]}{\mathbb{E}[W]} z^* - C z^{*\tau - 2}$$

yielding

$$\beta = 1/(\tau - 3)$$
 and $\delta = \tau - 2$

Truncated moments

For $a > \tau - 1$

$$\mathbb{E}[W^{a}\mathbb{1}_{\{W\leq \ell\}}] \sim \int_{1}^{\ell} w^{a} w^{-\tau} dw \sim \ell^{a-(\tau-1)}$$

Similarly, for $a < \tau - 1$

$$\mathbb{E}[W^{a}\mathbb{1}_{\{W>\ell\}}] \sim \int_{\ell}^{\infty} w^{a} w^{-\tau} \mathrm{d}w \sim \ell^{a-(\tau-1)}$$

Optimal choice is $\ell=1/z^{\star}$

Use of truncated moments

For small W use Taylor expansion as before

Then estimate terms like

$$\mathbb{E}[W^4 \mathbb{1}_{\{W \le 1/z^*\}}] z^{*3} \sim z^{*-(4-(\tau-1))} z^{*3} = z^{*\tau-2}$$

Use of truncated moments

For *small W* use Taylor expansion as before

Then estimate terms like

$$\mathbb{E}[W^4 \mathbb{1}_{\{W \le 1/z^*\}}] z^{*3} \sim z^{*-(4-(\tau-1))} z^{*3} = z^{*\tau-2}$$

For *large W* use simpler bounds e.g. a constant

Then estimate terms like

$$\mathbb{E}[W^2 \mathbb{1}_{\{W > 1/z^*\}}] z^* \sim z^{*-(2-(\tau-1))} z^* = z^{*\tau-2}$$

Overview

- 1. Inhomogeneous Curie-Weiss model (ICW)
- 2. Motivation via random graphs
- 3. Critical exponents
- 4. Non-classical limit theorem

Central limit theorem

Let S_n be the total spin $S_n = \sum_{i=1}^n \sigma_i$

Theorem (GGvdHP, '16)

For $\beta \geq 0, h \neq 0$ and for $0 \leq \beta < \beta_c, h = 0$

$$\frac{S_n - \mu_n(S_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \chi)$$

Proved by analyzing cumulant generating function

$$c_n(t) = \frac{1}{n} \log \mu_n(e^{tS_n})$$

and its first two derivatives

Central limit theorem

Let S_n be the total spin $S_n = \sum_{i=1}^n \sigma_i$

Theorem (GGvdHP, '16)

For $\beta \geq 0, h \neq 0$ and for $0 \leq \beta < \beta_c, h = 0$

$$\frac{S_n - \mu_n(S_n)}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \chi)$$

Proved by analyzing cumulant generating function

$$c_n(t) = \frac{1}{n} \log \mu_n(e^{tS_n})$$

and its first two derivatives

Does *not* hold for $\beta = \beta_c$, h = 0

Additional weight assumptions

We distinguish two cases

(i)
$$\mathbb{E}[W_n^4] = \frac{1}{n} \sum_{i \in [n]} w_i^4 \to \mathbb{E}[W^4] < \infty$$

(ii) the weights are chosen according the deterministic sequence

$$w_i = c_w \left(\frac{n}{i}\right)^{1/(\tau-1)}$$

for some constant $c_w>0$ and $au\in(3,5)$

The latter is a stronger assumption on the power-law behavior of $(w_i)_{i\geq 1}$

Non-classical limit theorem

Theorem (DGGvdHP, '15)

Let $\beta = \beta_c$, h = 0. Then, there exists a random variable X such that

$$\frac{S_n}{n^{\delta/(\delta+1)}} \stackrel{\mathcal{D}}{\longrightarrow} X$$

where X has density proportional to exp(-f(x)) with

$$f(x) = \begin{cases} \frac{1}{12} \frac{\mathbb{E}[W^4]}{\mathbb{E}[W]^4} x^4 & \text{when } \mathbb{E}[W^4] < \infty \\ \sum_{i \ge 1} \left(\frac{1}{2} \left(\frac{\tau - 2}{\tau - 1} x i^{-1/(\tau - 1)} \right)^2 & -\log \cosh \left(\frac{\tau - 2}{\tau - 1} x i^{-1/(\tau - 1)} \right) \right) \\ & \text{when } \tau \in (3, 5) \end{cases}$$

In both cases there exists an explicit constant C > 0 such that

$$\lim_{x \to \infty} \frac{f(x)}{x^{1+\delta}} = C$$

Sketch of proof

It suffices to show that exponential moments converge

$$\lim_{n\to\infty}\mu_n\left(\exp\left\{r\frac{S_n}{n^{\delta/(\delta+1)}}\right\}\right)\to \frac{\int_{-\infty}^\infty\exp(rx-f(x))\mathrm{d}x}{\int_{-\infty}^\infty\exp(-f(x))\mathrm{d}x}$$

Use Hubbard-Stratonovich transform $(e^{t^2/2} = \mathbb{E}[e^{tZ}]$ with $Z \sim \mathcal{N}(0,1)$) to write

$$\sum_{\sigma} e^{\frac{r}{n^{\delta/(\delta+1)}} \sum_{i=1}^{n} \sigma_{i}} e^{\frac{\beta}{2\ell_{n}} \left(\sum_{i=1}^{n} w_{i} \sigma_{i}\right)^{2}} = C_{n} \int_{-\infty}^{\infty} e^{-nG_{n}\left(\frac{x}{n^{1/(\delta+1)}},r\right)} dx$$

with

$$G_n(x,r) = \frac{x^2}{2} - \mathbb{E}\left[\log\cosh\left(\sqrt{\frac{\beta}{\mathbb{E}[W]}}Wx + \frac{r}{n^{\delta/(\delta+1)}}\right)\right]$$

The result then follows by using the Taylor expansion (for $\mathbb{E}[W^4] < \infty$)

$$\log \cosh x \approx \frac{x^2}{2} - \frac{1}{12}x^4$$

Related / future research

Results on critical behavior (DGvdH14) and CLTs (GGvdHP15) also hold in *quenched* model

What about non-classical limit theorem in quenched model?

Related / future research

Results on critical behavior (DGvdH14) and CLTs (GGvdHP15) also hold in *quenched* model

What about non-classical limit theorem in quenched model?

What about *rates of convergence* for limit theorems?

Perhaps we can use Stein's method for exchangeable pairs

Successfully used for Curie-Weiss model in Eichelsbacher, Löwe 2010

Related / future research

Results on critical behavior (DGvdH14) and CLTs (GGvdHP15) also hold in *quenched* model

What about non-classical limit theorem in quenched model?

What about *rates of convergence* for limit theorems?

Perhaps we can use Stein's method for exchangeable pairs

Successfully used for Curie-Weiss model in Eichelsbacher, Löwe 2010

The solution of the model and in several cases the critical behavior can also be derived for *compact spins*, e.g., continuous spins on [-1,1] D., Külske, Schriever 2016