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Properties of complex networks

Power-law behavior
Number of vertices with degree k is proportional to k−τ .

Small worlds
Distances in the network are small
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Preferential attachment

Possible explanation (Barabási, Albert, Science, 1999):
I “Networks expand continuously by the addition of new vertices;
I New vertices attach preferentially to sites that are already well

connected.”



4/16

/ department of mathematics and computer science

Linear preferential attachment

Here, linear preferential attachment:

Probability of connecting to certain vertex
proportional to its degree plus a constant δ.

Gives a power-law degree sequence (Cooper, Frieze, 2003):

Number of vertices with degree k is proportional to k 3+δ/m ,

where m is the number of edges of a new vertex.
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Model definition

Algorithm to construct the preferential attachment graph:
I Fix the number of edges per new vertex m ≥ 1 and constant
δ > −m .

I At time t = 2, start with 2 vertices connected by 2m edges.
I At time t + 1, given the graph at time t , PA(t), add a vertex and let,
for 1 ≤ j ≤ m,

P[j th edge of (t + 1) is connected to i |PA(t)] =
Di (t)+ δ
(2m + δ)t

.
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Known results

Let
diamt (G (V , E )) = max

i ,j∈V
distt (i , j ).

Then
I For m = 1, the graph is a tree and (Pittel, 1994):

diamt (PA(t)) ∼ log t ;

I For m ≥ 2, δ = 0 (Bollobás, Riordan, 2004):

diamt (PA(t)) ∼
log t

log log t
.
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Results

Theorem (DvdHH, 2010)

I For m ≥ 2, δ > 0,
diamt (PA(t)) ∼ log t ;

I For m ≥ 2, δ < 0,

diamt (PA(t)) ∼ log log t .
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Results

Theorem (DvdHH, 2010)

I For m ≥ 2, δ > 0,
diamt (PA(t)) ∼ log t ;

I For m ≥ 2, δ < 0,

diamt (PA(t)) ∼ log log t .

Sketch of proof that, for m ≥ 2, δ < 0,

diam2t (PA(2t)) ≤
(

4
| log(τ − 2)|

+
4σ
m

)
log log t .
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Split in layers

Core

Inner periphery

Outer periphery

Core: vertices with degree at
least (log t)σ , for σ > 1

3−τ ;

Inner periphery: vertices in
{1, . . . , t}\Core;

Outer periphery: vertices in
{t + 1, . . . ,2t}.
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Distances in/between layers

Core

Inner periphery

Outer periphery

4
| log(τ−2)| log log t

σ
logm log log t

σ
logm log log t
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Diameter of the core

Inner core ≤ C

Split core in layers of
decreasing degree.

Number of layers:

log log t
/
| log(τ − 2)|.
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Diameter of the core

Inner core ≤ C

≤ 2

Outer periphery

Split core in layers of
decreasing degree.

Number of layers:

log log t
/
| log(τ − 2)|.

Connection between layers
via a t -connector.
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t -connectors

Vertex j is a t -connector between vertex i and a set of vertices A if
I the first edge of j connects to i ,
I the second edge of j connects to k , for some k ∈ A .

Inner core ≤ C

≤ 2

Outer periphery

k

j

i
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Distance from inner periphery to core

Core

Inner periphery Outer periphery

i

σ
logm log log t
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Distance from inner periphery to core

Core

Inner periphery Outer periphery

i

σ
logm log log t

t -connector
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Distance from outer to inner periphery

Core

Inner periphery

Outer periphery

i

σ
logm log log t
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Distance from outer to inner periphery

Core

Inner periphery

Outer periphery

i

σ
logm log log t

P ≥ 1
2

s
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Probability of connecting to the inner periphery

P


s + 1

 = t∑
i=1

Di (s)+ δ
(2m + δ)s

≥

t∑
i=1

Di (t)+ δ
(2m + δ)2t

=
2mt + δt
(2m + δ)t

=
1
2
.
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Probability of connecting to the inner periphery

P


s + 1

 = t∑
i=1

Di (s)+ δ
(2m + δ)s
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t∑
i=1

Di (t)+ δ
(2m + δ)2t

=
2mt + δt
(2m + δ)t

=
1
2
.



14/16

/ department of mathematics and computer science

Probability of connecting to the inner periphery

P


s + 1

 = t∑
i=1

Di (s)+ δ
(2m + δ)s

≥

t∑
i=1

Di (t)+ δ
(2m + δ)2t

=
2mt + δt
(2m + δ)t

=
1
2
.

Number of leafs equals

m
σ

logm log log t
= (log t)σ .

Since σ = 1
3−τ > 1, probability of no connection between exploration

tree and inner periphery is o
(
1
t

)
.
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Collisions in the exploration tree

Possibility of collisions in the exploration tree:

x

P[at least 1 collission] ≤
∑
s∈T

Ds(2t)+ δ
t(2m + δ)

≤ m |T |
(log t)σ

t
≤

m(log t)2σ

t
.
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Collisions in the exploration tree

Possibility of collisions in the exploration tree:

x

P[at least 1 collission] ≤
∑
s∈T

Ds(2t)+ δ
t(2m + δ)

≤ m |T |
(log t)σ

t
≤

m(log t)2σ

t
.

Multiple collisions are very rare!
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Summary

Core

Inner periphery

Outer periphery

4
| log(τ−2)| log log t

σ
logm log log t

σ
logm log log t

Indeed,

diam2t (PA(2t)) ≤
(

4
| log(τ − 2)|

+
4σ
m

)
log log t .
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