Distances in preferential attachment graphs

Sander Dommers

Joint work with: Remco van der Hofstad

Gerard Hooghiemstra

Power-law behavior

Number of vertices with degree k is proportional to $k^{-\tau}$.

Small worlds

Distances in the network are small

Possible explanation (Barabási, Albert, Science, 1999):

- "Networks expand continuously by the addition of new vertices;
- New vertices attach preferentially to sites that are already well connected."

Linear preferential attachment

Here, linear preferential attachment:

Probability of connecting to certain vertex proportional to its *degree* plus a *constant* δ .

Gives a *power-law* degree sequence (Cooper, Frieze, 2003):

Number of vertices with degree k is proportional to $k^{3+\delta/m}$,

where m is the number of edges of a new vertex.

Algorithm to construct the preferential attachment graph:

- ► Fix the number of edges per new vertex $m \ge 1$ and constant $\delta > -m$.
- At time t = 2, start with 2 vertices connected by 2m edges.
- At time t + 1, given the graph at time t, PA(t), add a vertex and let, for 1 < j < m,

$$\mathbb{P}[j\text{th edge of } (t+1) \text{ is connected to } i|\mathsf{PA}(t)] = \frac{D_i(t) + \delta}{(2m+\delta)t}.$$

Let

$$diam_t(G(V, E)) = \max_{i,j \in V} dist_t(i, j).$$

Then

For m = 1, the graph is a tree and (Pittel, 1994):

$$\operatorname{diam}_{t}(\operatorname{PA}(t)) \sim \log t;$$

► For $m \ge 2$, $\delta = 0$ (Bollobás, Riordan, 2004):

$$\operatorname{diam}_t(\operatorname{PA}(t)) \sim \frac{\log t}{\log \log t}.$$

Theorem (DvdHH, 2010)

• For $m \geq 2$, $\delta > 0$,

 $\operatorname{diam}_{t}(\operatorname{PA}(t)) \sim \log t;$

▶ For $m \ge 2$, $\delta < 0$,

 $\operatorname{diam}_t(\operatorname{PA}(t)) \sim \log \log t$.

Theorem (DvdHH, 2010)

- For $m \geq 2$, $\delta > 0$,
- $\operatorname{diam}_t(\operatorname{PA}(t)) \sim \log t;$

▶ *For* $m \ge 2$, $\delta < 0$,

 $\operatorname{diam}_t(\operatorname{PA}(t)) \sim \log \log t.$

Sketch of proof that, for $m \ge 2$, $\delta < 0$,

$$\mathsf{diam}_{2t}(\mathsf{PA}(2t)) \leq \left(\frac{4}{|\log(\tau-2)|} + \frac{4\sigma}{m}\right)\log\log t.$$

Core: vertices with degree at least $(\log t)^{\sigma}$, for $\sigma > \frac{1}{3-\tau}$;

Inner periphery: vertices in $\{1, \ldots, t\}\setminus Core;$

Outer periphery: vertices in $\{t+1,\ldots,2t\}$.

Split core in layers of decreasing degree.

Number of layers: $\log \log t / |\log(\tau - 2)|$.

Split core in layers of decreasing degree.

Number of layers: $\log \log t / |\log(\tau - 2)|$.

Connection between layers via a *t-connector*.

Vertex *j* is a *t-connector* between vertex *i* and a set of vertices *A* if

- ▶ the *first* edge of *j* connects to *i*,
- ▶ the *second* edge of *j* connects to *k*, for *some* $k \in A$.

Number of leafs equals

$$m^{\frac{\sigma}{\log m}\log\log t}=(\log t)^{\sigma}.$$

Since $\sigma = \frac{1}{3-\tau} > 1$, probability of no connection between exploration tree and inner periphery is $o\left(\frac{1}{t}\right)$.

Possibility of collisions in the exploration tree:

$$\mathbb{P}[\text{at least 1 collission}] \leq \sum_{s \in \mathcal{T}} \frac{D_s(2t) + \delta}{t(2m + \delta)}$$

Possibility of collisions in the exploration tree:

$$\mathbb{P}[\text{at least 1 collission}] \leq \sum_{s \in \mathcal{T}} \frac{D_s(2t) + \delta}{t(2m + \delta)} \leq m^{|\mathcal{T}|} \frac{(\log t)^{\sigma}}{t} \leq \frac{m(\log t)^{2\sigma}}{t}.$$

Multiple collisions are very rare!

Summary

Indeed,

$$\mathsf{diam}_{2t}(\mathsf{PA}(2t)) \leq \left(\frac{4}{|\log(\tau-2)|} + \frac{4\sigma}{m}\right)\log\log t.$$

