Distances in preferential attachment graphs

Sander Dommers

Joint work with:
Remco van der Hofstad Gerard Hooghiemstra

Properties of complex networks

Power-law behavior

Number of vertices with degree k is proportional to $k^{-\tau}$.

Barabási, Linked, '02

Small worlds

Distances in the network are small

Preferential attachment

Possible explanation (Barabási, Albert, Science, 1999):

- "Networks expand continuously by the addition of new vertices;
- New vertices attach preferentially to sites that are already well connected."

Linear preferential attachment

Here, linear preferential attachment:

Probability of connecting to certain vertex proportional to its degree plus a constant δ.

Gives a power-law degree sequence (Cooper, Frieze, 2003):
Number of vertices with degree k is proportional to $k^{3+\delta / m}$,
where m is the number of edges of a new vertex.

Model definition

Algorithm to construct the preferential attachment graph:

- Fix the number of edges per new vertex $m \geq 1$ and constant $\delta>-m$.
- At time $t=2$, start with 2 vertices connected by $2 m$ edges.
- At time $t+1$, given the graph at time $t, \operatorname{PA}(t)$, add a vertex and let, for $1 \leq j \leq m$,

$$
\mathbb{P}[j \text { th edge of }(t+1) \text { is connected to } i \mid \mathrm{PA}(t)]=\frac{D_{i}(t)+\delta}{(2 m+\delta) t} .
$$

Known results

Let

$$
\operatorname{diam}_{t}(G(V, E))=\max _{i, j \in V} \operatorname{dist}_{t}(i, j) .
$$

Then

- For $m=1$, the graph is a tree and (Pittel, 1994):

$$
\operatorname{diam}_{t}(\mathrm{PA}(t)) \sim \log t
$$

- For $m \geq 2, \delta=0$ (Bollobás, Riordan, 2004):

$$
\operatorname{diam}_{t}(\mathrm{PA}(t)) \sim \frac{\log t}{\log \log t}
$$

Results

Theorem (DvdHH, 2010)

- For $m \geq 2, \delta>0$,

$$
\operatorname{diam}_{t}(\mathrm{PA}(t)) \sim \log t
$$

- For $m \geq 2, \delta<0$,

$$
\operatorname{diam}_{t}(\mathrm{PA}(t)) \sim \log \log t
$$

Results

Theorem (DvdHH, 2010)

- For $m \geq 2, \delta>0$,

$$
\operatorname{diam}_{t}(\mathrm{PA}(t)) \sim \log t ;
$$

- For $m \geq 2, \delta<0$,

$$
\operatorname{diam}_{t}(\mathrm{PA}(t)) \sim \log \log t
$$

Sketch of proof that, for $m \geq 2, \delta<0$,

$$
\operatorname{diam}_{2 t}(\mathrm{PA}(2 t)) \leq\left(\frac{4}{|\log (\tau-2)|}+\frac{4 \sigma}{m}\right) \log \log t
$$

Split in layers

Core: vertices with degree at least $(\log t)^{\sigma}$, for $\sigma>\frac{1}{3-\tau}$;

Inner periphery: vertices in $\{1, \ldots, t\} \backslash$ Core;

Outer periphery: vertices in $\{t+1, \ldots, 2 t\}$.

Outer periphery

Distances in/between layers

Diameter of the core

Split core in layers of

 decreasing degree.
Number of layers:

$$
\log \log t /|\log (\tau-2)|
$$

Diameter of the core

Split core in layers of decreasing degree.

Number of layers:
$\log \log t /|\log (\tau-2)|$.
Connection between layers via a t-connector.

t-connectors

Vertex j is a t-connector between vertex i and a set of vertices A if

- the first edge of j connects to i,
- the second edge of j connects to k, for some $k \in A$.

Distance from inner periphery to core

Distance from inner periphery to core

Distance from outer to inner periphery

Outer periphery

Distance from outer to inner periphery

Outer periphery

Probability of connecting to the inner periphery

Probability of connecting to the inner periphery

Probability of connecting to the inner periphery

Number of leafs equals

$$
m^{\frac{\sigma}{\log m} \log \log t}=(\log t)^{\sigma} .
$$

Since $\sigma=\frac{1}{3-\tau}>1$, probability of no connection between exploration tree and inner periphery is o $\left(\frac{1}{t}\right)$.

Collisions in the exploration tree

Possibility of collisions in the exploration tree:

$\mathbb{P}[$ at least 1 collission $] \leq \sum_{s \in \mathcal{T}} \frac{D_{s}(2 t)+\delta}{t(2 m+\delta)}$

Collisions in the exploration tree

Possibility of collisions in the exploration tree:

\mathbb{P} [at least 1 collission] $\leq \sum_{s \in \mathcal{T}} \frac{D_{s}(2 t)+\delta}{t(2 m+\delta)} \leq m^{|\mathcal{T}|} \frac{(\log t)^{\sigma}}{t} \leq \frac{m(\log t)^{2 \sigma}}{t}$.
Multiple collisions are very rare!

Summary

Indeed,

$$
\operatorname{diam}_{2 t}(\mathrm{PA}(2 t)) \leq\left(\frac{4}{|\log (\tau-2)|}+\frac{4 \sigma}{m}\right) \log \log t
$$

