RUHR UNIVERSITÄT BOCHUM

Metastability of the Ising model on random regular graphs at zero temperature

Sander Dommers

Random regular graphs

RUB

Construction of random r-regular graph with n vertices:

- Assign r half-edges to each vertex $i \in\{1, \ldots, n\}$
- Attach first half-edge to another half-edge uniformly at random
- Continue until all half-edges are connected

Denote resulting graph by $G_{n}=\left(\{1, \ldots, n\}, E_{n}\right)$

Ising model

RUB

Ising measure on G_{n} for $\sigma \in\{-1,+1\}^{n}$

$$
\mu(\sigma)=\frac{1}{Z_{n}} e^{-\beta H(\sigma)}
$$

with Hamiltonian

$$
H(\sigma)=-\sum_{(i, j) \in E_{n}} \sigma_{i} \sigma_{j}-h \sum_{i=1}^{n} \sigma_{i}
$$

where

$$
\begin{array}{ll}
\beta \geq 0 & \text { inverse temperature } \\
h>0 & \text { external magnetic field } \\
Z_{n} & \text { normalization factor (partition function) }
\end{array}
$$

Ising model on random graphs in equilibrium

Expressions known for pressure, magnetization, etc.
Dembo, Montanari 2010; D., van der Hofstad, Giardinà 2010
Critical temperature $\tanh \beta_{c}=\frac{1}{r-1}$
Critical exponents are mean field
D., van der Hofstad, Giardinà 2014

Ising model on random graphs in equilibrium

Expressions known for pressure, magnetization, etc.
Dembo, Montanari 2010; D., van der Hofstad, Giardinà 2010
Critical temperature $\tanh \beta_{c}=\frac{1}{r-1}$
Critical exponents are mean field
D., van der Hofstad, Giardinà 2014

Proofs use

- locally tree-like structure of random graphs
- correlation inequalities to reduce graph problem to tree problem
- analysis of a tree-recursion

Discrete Glauber dynamics

RUB

Discrete time Markov chain where at every time step

1) Pick vertex i uniformly from $\{1, \ldots, n\}$
2) Flip spin σ_{i} with probability $\begin{cases}1 & \text { if } H\left(\sigma^{i}\right) \leq H(\sigma) \\ e^{-\beta\left[H\left(\sigma^{i}\right)-H(\sigma)\right]} & \text { if } H\left(\sigma^{i}\right)>H(\sigma)\end{cases}$

Equilibrium distribution $\mu(\sigma)=\frac{1}{Z_{n}} e^{-\beta H(\sigma)}$

Metastability

RUB

Take zero temperature limit $\beta \rightarrow \infty$
Then, $\mu(\sigma)=\frac{1}{Z_{n}} e^{-\beta H(\sigma)}$ concentrates on minimizer of

Main result

RUB

Theorem

For random r-regular graphs with $r \geq 3$,
$h \leq C_{0} \sqrt{r}$ for small constant C_{0},
\exists constants $0<C_{1}<\infty, C_{2}<\infty$ such that, whp,

$$
\lim _{\beta \rightarrow \infty} \mathbb{P}\left[\exp \left\{\beta\left(r / 2-C_{1} \sqrt{r}\right) n\right\}<\tau(\boxminus, \boxplus)<\exp \left\{\beta\left(r / 2+C_{2} \sqrt{r}\right) n\right\}\right]=1
$$

Main result

RUB

Theorem

For random r-regular graphs with $r \geq 3$,
$h \leq C_{0} \sqrt{r}$ for small constant C_{0},
\exists constants $0<C_{1}<\infty, C_{2}<\infty$ such that, whp,

$$
\lim _{\beta \rightarrow \infty} \mathbb{P}\left[\exp \left\{\beta\left(r / 2-C_{1} \sqrt{r}\right) n\right\}<\tau(\boxminus, \boxplus)<\exp \left\{\beta\left(r / 2+C_{2} \sqrt{r}\right) n\right\}\right]=1
$$

Note that exponent is linear in n
Big difference with e.g. lattices where $\tau(\boxminus, \boxplus) \sim e^{\beta C}$

Pathwise approach

RUB

Cassandro, Galves, Olivieri, Vares 1984, Neves, Schonmann 1991 Manzo, Nardi, Olivieri, Scoppola 2004, Cirillo, Nardi 2013

Communication height

$$
\Phi\left(\sigma, \sigma^{\prime}\right)=\min _{\omega \text { path from } \sigma \text { to } \sigma^{\prime}} \max _{\sigma^{\prime \prime} \in \omega} H\left(\sigma^{\prime \prime}\right)
$$

Stability level

$$
V_{\sigma}=\min _{\sigma^{\prime}: H\left(\sigma^{\prime}\right)<H(\sigma)} \Phi\left(\sigma, \sigma^{\prime}\right)-H(\sigma)
$$

Pathwise approach (cont.)

RUB

Proposition

If there exist $0<\Gamma_{\ell} \leq \Gamma_{u}<\infty$ such that

1) $\Phi(\boxminus, \boxplus)-H(\boxminus) \geq \Gamma_{\ell}$
2) $\Phi(\boxminus, \boxplus)-H(\boxminus) \leq \Gamma_{u}$
3) for all $\sigma \notin\{\boxminus, \boxplus\}$ it holds that $V_{\sigma} \leq \Gamma_{u}$
then, for all $\varepsilon>0$,

$$
\lim _{\beta \rightarrow \infty} \mathbb{P}\left[\exp \left\{\beta\left(\Gamma_{\ell}-\varepsilon\right)\right\}<\tau(\boxminus, \boxplus)<\exp \left\{\beta\left(\Gamma_{u}+\varepsilon\right)\right\}\right]=1
$$

Isoperimetric number

RUB

The (edge) isoperimetric number of G_{N} is defined as

$$
i_{e}\left(G_{N}\right)=\min _{\substack{A \subset\{1, \ldots, n\} \\|A| \leq n / 2}} \frac{\left|\partial_{e} A\right|}{|A|}
$$

Note that, for all A with $|A| \leq n / 2$,

$$
\left|\partial_{e} A\right| \geq i_{e}\left(G_{N}\right)|A|
$$

Lower bound on i_{e} for regular graphs

RUB

Lemma (Bollobás 1988)

For r-regular random graphs with $r \geq 3$, whp,

$$
i_{e}\left(G_{n}\right) \geq \frac{r}{2}-\sqrt{\log 2} \sqrt{r}
$$

Lower bound on i_{e} for regular graphs

RUB

Lemma (Bollobás 1988)

For r-regular random graphs with $r \geq 3$, whp,

$$
i_{e}\left(G_{n}\right) \geq \frac{r}{2}-\sqrt{\log 2} \sqrt{r}
$$

Note that i_{e} is bounded away from 0 for $n \rightarrow \infty$
Such graphs are called expander graphs
This in contrast to lattices for which $i_{e} \rightarrow 0$ as $n \rightarrow \infty$

Lower bound on i_{e} for regular graphs

RUB

Lemma (Bollobás 1988)

For r-regular random graphs with $r \geq 3$, whp,

$$
i_{e}\left(G_{n}\right) \geq \frac{r}{2}-\sqrt{\log 2} \sqrt{r}
$$

Note that i_{e} is bounded away from 0 for $n \rightarrow \infty$
Such graphs are called expander graphs
This in contrast to lattices for which $i_{e} \rightarrow 0$ as $n \rightarrow \infty$

Proof by bounding probability that given set has a small boundary and then using union bound

Upper bound on i_{e} for regular graphs

Lemma (Alon 1997)

$\exists C>0$ such that, for all r-regular graphs with $n \geq 40 r^{9}$,
$\exists A \subset[n]$ with $|A|=\lfloor n / 2\rfloor$ such that

$$
\frac{\left|\partial_{e} A\right|}{|A|} \leq \frac{r}{2}-C \sqrt{r}
$$

and hence also

$$
i_{e}\left(G_{n}\right) \leq \frac{r}{2}-C \sqrt{r}
$$

Condition 1) $\Phi(\boxminus, \boxplus)-H(\boxminus) \geq \Gamma_{\ell}$

Lemma

If $h \leq C_{0} \sqrt{r}$ for small constant C_{0},
then $\exists C_{1}>0$ such that $\forall \sigma$ with $n / 2+$ spins

$$
H(\sigma)-H(\boxminus) \geq\left(i_{e}\left(G_{n}\right)-h\right) n \geq\left(\frac{r}{2}-C_{1} \sqrt{r}\right) n
$$

Condition 1) $\Phi(\boxminus, \boxplus)-H(\boxminus) \geq \Gamma_{\ell}$

Lemma

If $h \leq C_{0} \sqrt{r}$ for small constant C_{0},
then $\exists C_{1}>0$ such that $\forall \sigma$ with $n / 2+$ spins

$$
H(\sigma)-H(\boxminus) \geq\left(i_{e}\left(G_{n}\right)-h\right) n \geq\left(\frac{r}{2}-C_{1} \sqrt{r}\right) n
$$

Proof.

Condition 1) $\Phi(\boxminus, \boxplus)-H(\boxminus) \geq \Gamma_{\ell}$

RUB

Lemma

If $h \leq C_{0} \sqrt{r}$ for small constant C_{0},
then $\exists C_{1}>0$ such that $\forall \sigma$ with $n / 2+$ spins

$$
H(\sigma)-H(\boxminus) \geq\left(i_{e}\left(G_{n}\right)-h\right) n \geq\left(\frac{r}{2}-C_{1} \sqrt{r}\right) n
$$

Similarly one can show that any path must lie above this purple line:

Condition 2) $\Phi(\boxminus, \boxplus)-H(\boxminus) \leq \Gamma_{u}$

RUB

Use that there exists a configuration with $n / 2+$ spins, call this the set A, with

$$
\left|\partial_{e} A\right| \leq\left(\frac{r}{2}-C \sqrt{r}\right) \frac{n}{2}
$$

and that there always exists a path to \boxminus and \boxplus that doesn't increase energy too much

Going to lower energy configurations

Start with set of plus spins A with $|A| \leq n / 2$
Use the following (implicit) construction:

1. Select a + spin with at least 1

- neighbor and flip this spin

Energy goes up at most $2(r-2+h)$
2. Repeat this s times (choose s later)
3. Select $a+$ spin with at least $(r+h) / 2$

- neighbors and flip this spin

Energy doesn't go up
4. Repeat this until no such spins are left

Choose s big enough so that energy at end is guaranteed to be smaller then at start
Energy barrier between start and end is at most $2(r-2+h) s$

Going to lower energy configurations

RUB

One can choose $s=\mathcal{O}(n / \sqrt{r})$, so that energy barrier is at most

$$
2(r-2+h) s=\mathcal{O}(\sqrt{r} n) .
$$

This proves Condition 2) because indeed

$$
\Phi(\boxminus, \boxplus)-H(\boxminus) \leq\left(\frac{r}{2}+C_{2} \sqrt{r}\right) \frac{n}{2}
$$

Same argument can be used for Condition 3)

Main result

Theorem

For random r-regular graphs with $r \geq 3$,
$h \leq C_{0} \sqrt{r}$ for small constant C_{0},
there exist constants $0<C_{1}<\infty, C_{2}<\infty$ such that, whp,

$\lim _{\beta \rightarrow \infty} \mathbb{P}\left[\exp \left\{\beta\left(r / 2-C_{1} \sqrt{r}\right) n\right\}<\tau(\boxminus, \boxplus)<\exp \left\{\beta\left(r / 2+C_{2} \sqrt{r}\right) n\right\}\right]=1$

\exists is the metastable state

RUB

Definition

η is a metastable state if

$$
V_{\eta}=\max _{\sigma \neq \boxplus} V_{\sigma}
$$

Theorem
For random r-regular graphs with $r \geq 6$,
$h \leq C_{0} \sqrt{r}$ for small constant C_{0},
\boxminus is the unique metastable state whp

Proof that \boxminus is metastable

RUB

Proposition

If there exist $0<\Gamma_{\ell}<\infty$ such that

1) $\Phi(\boxminus, \boxplus)-H(\boxminus) \geq \Gamma_{\ell}$

3') for all $\sigma \notin\{\boxminus, \boxplus\}$ it holds that $V_{\sigma}<\Gamma_{\ell}$
then \boxminus is the unique metastable state

Proof that \boxminus is metastable

RUB

One has to prove that

$$
2(r-2+h) \frac{C^{\prime}}{\sqrt{r}} n<\left(r / 2-C_{1} \sqrt{r}\right) n
$$

We need to compare constants (and need to improve them for $r \leq 10$)

Proof that \boxminus is metastable

RUB

One has to prove that

$$
2(r-2+h) \frac{C^{\prime}}{\sqrt{r}} n<\left(r / 2-C_{1} \sqrt{r}\right) n
$$

We need to compare constants (and need to improve them for $r \leq 10$)

For this note that for $r \geq 6$ we have that $i_{e}>1$
Hence in any set A with $|A| \leq n / 2$ there exists a vertex with at least 2 neighbors in A^{c}

This improves the bounds in the proof of Condition 3) which are sufficient to prove Condition 3')

Further research

RUB

Can we prove that $\tau(\boxminus, \boxplus) \sim \exp \left\{\beta \Gamma_{n}\right\}$ with

$$
\lim _{n \rightarrow \infty} \frac{\Gamma_{n}}{n}=\gamma
$$

and determine γ ?
What do the critical droplet and tube of typical trajectories look like?

What about positive temperature? (In the limit $h \searrow 0$, or $n \rightarrow \infty$)?
What about more general degrees? (next talk)

