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Introduction

There are many complex real-world networks, e.g., social, biological,
technological, . . .

Many have scale-free behavior, i.e., a power-law degree distribution.

Processes on networks: opinion formation, virus spreading. . .
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Introduction

We model opinion spreading with the Ising model, a paradigm model in
statistical physics for cooperative behavior.

What are effects of structure of complex networks on behavior of Ising
model? Here, the effect on phase transitions.
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Power-law random graphs

In the configuration model (CM) a graph Gn = (Vn = [n], En) is
constructed as follows.

I Let D have a certain distribution (the degree distribution);
I Assign Di half-edges to each vertex i ∈ [n], where Di are i.i.d. like D

(Add one half-edge to last vertex when the total number of
half-edges is odd);

I Attach first half-edge to another half-edge uniformly at random;
I Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

ck−τ ≤ P[D = k ] ≤ Ck−τ , τ > 2.
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Local structure configuration model for τ > 2

Start from random vertex, which has degree distributed as D , and look
at its neighbors.

D

K

Locally tree-like structure: a branching process with offspring D in first
generation and K in further generations. Also, uniformly sparse.
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Definition of the Ising model

On a graph Gn , the ferromagnetic Ising model is given by the following
Boltzmann distribution over σ ∈ {−1,+1}n ,

µ(σ ) =
1

Zn(β,B )
exp

β ∑
(i ,j )∈En

σiσj + B
∑
i∈[n]

σi

 ,
where

I β ≥ 0 is the inverse temperature;
I B is the external magnetic field;
I Zn(β,B ) is a normalization factor (the partition function), i.e.,

Zn(β,B ) =
∑

σ∈{−1,1}n

exp

β ∑
(i ,j )∈En

σiσj + B
∑
i∈[n]

σi

 .
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Previous results

Theorem (Dembo, Montanari, ’10)
If E[K ] <∞, then the pressure per particle in the thermodynamic limit,
a.s.,

lim
n→∞

1
n

log Zn(β,B ) = ϕ(β,B ),

for some explicit function ϕ(β,B ).
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Previous results

Theorem (Dembo, Montanari, ’10)
If E[K ] <∞, then the pressure per particle in the thermodynamic limit,
a.s.,

lim
n→∞

1
n

log Zn(β,B ) = ϕ(β,B ),

for some explicit function ϕ(β,B ).

Theorem (DGvdH, ’10)
The same holds for τ > 2.
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Magnetization

Define the magnetization as

M (β,B ) ≡ lim
n→∞

1
n

n∑
i=1

〈
σi
〉
µ
,

where 〈·〉µ denotes the expectation under the Ising measure µ.

The spontaneous magnetization is then defined as

M (β,0+) ≡ lim
B↘0

M (β,B ).

The critical temperature βc equals

βc ≡ inf{β : M (β,0+) > 0}.
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Critical temperature

Theorem (Lyons, ’89, DGvdH, ’12)
The critical temperature βc equals, a.s.,

βc = atanh(1/E[K ]).

Note that, for τ ∈ (2,3), we have E[K ] = ∞, so that βc = 0.

We study critical exponents for τ > 3.
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Critical exponents

The critical exponents are defined as:

M (β,0+) � (β − βc)
β, for β ↘ βc;

M (βc ,B ) � B 1/δ, for B ↘ 0;

χ(β,0+) � (β − βc)
−γ , for β ↗ βc ,

where χ(β,B ) = ∂
∂B M (β,B ).

Theorem (DGvdH, ’12)

E[K 3
] <∞ τ ∈ (3,4) ∪ (4,5)

β 1/2 1/(τ − 3)

δ 3 τ − 2

γ 1 1
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Tree recursion

Root magnetization on a tree:

B

B
B

B
B

B
B

B

B

B
h ∗1

h ∗2

h ∗D

Effective field h ∗ is unique solution to recursion

h (t+1) d
= B +

Kt∑
i=1

ξ(h (t)
i ),

where,
ξ(h ) = atanh(tanh(β) tanh(h )).
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Magnetization

B
h ∗1

h ∗2

h ∗D

The magnatization equals

M (β,B ) = E

[
tanh

(
B +

D∑
i=1

ξ(hi )

)]
≈ B + E[D ]E[ξ(h )].

Hence, same scaling for M (β,B ) and E[ξ(h )].



13/14

/ department of mathematics and computer science

Sketch of proof

Taylor expansion of E[ξ(h )] :

E[ξ(h )] = E

[
ξ

(
B +

K∑
i=1

ξ(hi )

)]
≈ tanh(β)E[h ] − CE[h 3

]

= tanh(β) (B + E[K ]E[ξ(h )])− CE

(B +
K∑

i=1

ξ(hi )

)3
 .
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Sketch of proof

Taylor expansion of E[ξ(h )] :

E[ξ(h )] = E

[
ξ

(
B +

K∑
i=1

ξ(hi )

)]
≈ tanh(β)E[h ] − CE[h 3

]

= tanh(β) (B + E[K ]E[ξ(h )])− CE

(B +
K∑

i=1

ξ(hi )

)3
 .

Only allowed for E[K 3
] <∞. In that case

E[ξ(h )] ≈ tanh(β)B + tanh(β)E[K ]E[ξ(h )] − CE[ξ(h )]3.
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Conclusion

Theorem (DGvdH, ’12)

E[K 3
] <∞ τ ∈ (3,4) ∪ (4,5)

β 1/2 1/(τ − 3)

δ 3 τ − 2

γ 1 1
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Conclusion

Theorem (DGvdH, ’12)

E[K 3
] <∞ τ ∈ (3,4) ∪ (4,5)

β 1/2 1/(τ − 3)

δ 3 τ − 2

γ 1 1

Conjectured that also

E[K 3
] <∞ τ ∈ (3,4) ∪ (4,5)

γ ′ 1 1

α′ 0 (τ − 5)/(τ − 3)
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