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Introduction
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There are many complex real-world networks, e.g.,

» Social networks (friendships, business relationships, sexual
contacts, ...);

» Information networks (World Wide Web, citations, ...);
» Technological networks (Internet, airline routes, ...);
» Biological networks (protein interactions, neural networks,...).

Sexual network Colorado
Springs, USA
(Potterat, et al., ’02)
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Small part of the Internet
(http://www.fractalus.com/
steve/stuff/ipmap/)
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Yeast protein interaction
network
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Properties of complex networks

Power-law behavior
Number of vertices with degree k is proportionalto k7.
Often, 2 < = < 3 (finite mean, infinite variance).

Bell Curve Power Law Distribution
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Small worlds
Distances in the network are small
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Ising model

Ising model: paradigm model in statistical physics for cooperative
behavior.

When studied on complex networks it can model for example opinion
spreading in society.

What are effects of structure of complex networks on behavior of Ising
model?
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Power-law random graphs
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In the configuration modela graph G, = (V, = [n], E,) is constructed as
follows.

Let D have a certain distribution (the degree distribution);

Assign D half-edges to each vertex i € [n], where D; are i.i.d. like D
(Add one half-edge to last vertex when the total number of
half-edges is odd);

Attach first half-edge to another half-edge uniformly at random;

Continue until all half-edges are connected.
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Special attention to power-law degree sequences, i.e.,

P[D > k] < ck= b, > 1.
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Local structure configuration model for r > 2

Start from random vertex i which has degree D;.

Look at neighbors of vertex i, probability such a neighbor has degree
k + 1 is approximately,

(k + 1) Zje[n] ]l{Dj:k—i-l}
Zie[n] Di
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Local structure configuration model for r > 2

Start from random vertex i which has degree D;.

Look at neighbors of vertex i, probability such a neighbor has degree
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Local structure configuration model for r > 2

Start from random vertex i which has degree D;.

Look at neighbors of vertex i, probability such a neighbor has degree
k + 1 is approximately,

(k+1) 2 jerm Lio=k+1)/0 (k + DP[D = k + 1]
—

, fort > 2.
Zie[n] Dj/n E[D]

Let K have distribution (the forward degree distribution),

(k + DHP[D = k + 1]

PIK = k] = (D]

Locally tree-like structure: a branching process with offspring D in first
generation and K in further generations. Also, uniformly sparse.
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Definition of the Ising model

On a graph G,, the ferromagnetic Ising modelis given by the following
Boltzmann distributions overo ¢ {—1, +1}",

1
u(o) = o————expqp Z oioj + Z Boj ¢,
Z,(B, B) 07 :
,J)EEn ie[n]
where

» B > 0isthe inverse temperature;
» B is the external magnetic field;
» Z,(B. B) is a normalization factor (the partition function).
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Critical temperature

Define the magnetization on G, as

n

(5 2_ il
i=1

::\l—\

my(B, B) =

Then, the spontaneous magnetization,

=0, B < B
> 0, B > Bec.

M =lim lim m,
B0 n—o00

The critical inverse temperature B, is given by
E[K](tanh B¢) = 1.

Note that, for r € (2, 3), we have E[K] = oo, so that B, = 0.
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Pressure in thermodynamic limit (E[K] < o0)

Theorem (Dembo, Montanari, ’08)

For alocally tree-like and uniformly sparse graph sequence {G,},-1 with
E[K] < oo, the pressure per particle,

1
Vn(B.B) = — log Z, (B, B),

converges, forn — oo, to
E[D E[D
% log cosh(B) — %

D
+E |:log (eB 1_[ {1 + tanh(B) tanh(h))}

i=1

on(B,B) = E[log(1 + tanh(B) tanh(h;) tanh(h,))]

D

+e P[] {1 —tanh(p) tanh(h,-)})} :
i=1
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Pressure in thermodynamic limit (E[D] < 00)

Theorem (DGvdH, ’09)
Lett > 2. Then, in the configuration model, the pressure per particle,

1
wn(ﬁv B) - H logzn(IB’ B)’

converges almost surely, forn — oo, to

E[D] E[D]

on(B,B) = - log cosh(B) — TE[ log(1 + tanh(B) tanh(hy) tanh(h,))]

D
+E |:log (eB 1_[ {1 + tanh(B) tanh(hy)}

i=1

D
+e B {1 -tanh(B) tanh(h,-)}ﬂ .
i=1
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Tree recursion

Proposition
Let K; be i.i.d. like K and B > 0. Then, the recursion

Kt
ht+h L gy > " atanh(tanh(g) tanh(h{")),
i=1
has a unique fixed point hz.

Interpretation: the effective field of a vertex in a tree expressed in that of
its neighbors.

Uniqueness shown by showing that effect of boundary conditions on
generation f vanishes for t — oco.

This is done using monotonicityin g and B and concavity in B of the
magnetization in the ferromagnetic Ising model.
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Outline of the proof

Aim 4 (B, B)

€ B
= lim lim [1/;,,(0,8)—1—/0 8ﬁ/l//n(ﬂ , B)ydp’ +/

el0 n—o0

8 / /
LRI

B
o1 (0, B)+o+g£/8 3598 BIap

= ¢n(B, B).
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Outline of the proof

Aim 4 (B, B)
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Derivative of pressure

0 1 E e (0107)
LB =2 Y ooy, = | Xd.e (9197),
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Derivative of pressure

’ ! 1Bl Zares, (190,
@wn(ﬂ’ B) = n (i%e:E <U'0]>/L T n |E,
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Derivative of ¢

0 E[D]
559 BB = ——E[(oic],].
on(B, B) = E[ZD] log cosh(B) — @E[log(l + tanh(B) tanh(h;) tanh(h,))]

D D
+E [Iog (eB 1_[ {1+ tanh(p)tanh(h)} + e~ ? ]_[ {1 —tanh(B) tanh(h,-)}ﬂ
i=1 i=1

» Show that we can ignore dependence of h; on ;
(Interpolation techniques. Split analysis into two parts, one for
small degrees and one for large degrees)

» Compute the derivative with assuming g fixed in h;.
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Distances in power-law random graphs

Let H, be the graph distance between two uniformly chosen connected
vertices in the configuration model. Then:

» Fort > 3 and E[K] > 1 (vdH, Hooghiemstra, Van Mieghem, ’05),
H, ~ logn,
» Fort € (2, 3) (vdH, Hooghiemstra, Znamenski, ’07),

H, ~ loglog n;
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Distances in power-law random graphs

Let H, be the graph distance between two uniformly chosen connected
vertices in the configuration model. Then:

» Fort > 3 and E[K] > 1 (vdH, Hooghiemstra, Van Mieghem, ’05),
H, ~ logn,
» Fort € (2, 3) (vdH, Hooghiemstra, Znamenski, ’07),

H, ~ loglog n;

Fort > 3 and t € (2, 3) similar results hold for the diameter of linear
preferential attachment models (D, vdH, Hooghiemstra, *09).
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Critical exponents

Predictions by physicists (Dorogovtsev, Goltsev, Mendes, ’02 and Leone,
Vazquez, Vespignani, Zecchina, ’02).

Critical behavior for 8 | B of magnetization m, specific heat §C and
susceptibility x .

m sC X

T>5 ~ (B - ﬂc)l/2 jump at ¢ ~ (B - ,Bc)_l

1€B3,5 | ~(B—=PB)YVED | ~(B—B)C DD

T€(2,3) [~ (B—=BIVC | ~(B=B)TVCT N~ (B~ B
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