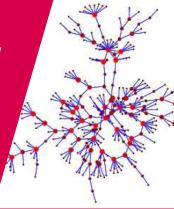
Ising models on power-law random graphs

Sander Dommers

Joint work with: Cristian Giardinà Remco van der Hofstad

Statistical Mechanics on Random Structures November 17, 2009



Technische Universiteit **Eindhoven** University of Technology

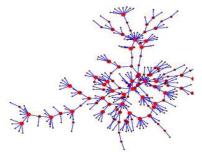
Where innovation starts

TU

Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).

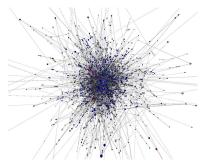


Sexual network Colorado Springs, USA (Potterat, et al., '02)

Introduction

There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (*Internet*, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).



Small part of the Internet (http://www.fractalus.com/ steve/stuff/ipmap/)

Introduction

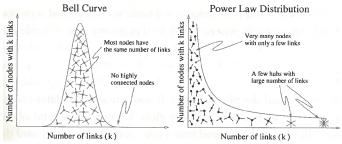
There are many complex real-world networks, e.g.,

- Social networks (friendships, business relationships, sexual contacts, ...);
- Information networks (World Wide Web, citations, ...);
- Technological networks (Internet, airline routes, ...);
- Biological networks (protein interactions, neural networks,...).

Yeast protein interaction network (Jeong, et al., '01)

Power-law behavior

Number of vertices with degree k is proportional to $k^{-\tau}$. Often, $2 < \tau < 3$ (finite mean, infinite variance).



Barabási, Linked, '02

Small worlds Distances in the network are small

3/16

Ising model

Ising model: paradigm model in statistical physics for *cooperative behavior*.

When studied on complex networks it can model for example *opinion spreading* in society.

What are effects of *structure* of complex networks on *behavior* of Ising model?

Power-law random graphs

In the *configuration model* a graph $G_n = (V_n = [n], E_n)$ is constructed as follows.

- Let D have a certain distribution (the degree distribution);
- ► Assign D_i half-edges to each vertex i ∈ [n], where D_i are i.i.d. like D (Add one half-edge to last vertex when the total number of half-edges is odd);
- Attach first half-edge to another half-edge uniformly at random;
- Continue until all half-edges are connected.

Special attention to power-law degree sequences, i.e.,

$$\mathbb{P}[D \geq k] \leq ck^{-(\tau-1)}, \qquad \tau > 1.$$

Local structure configuration model for $\tau > 2$

Start from random vertex i which has degree D_i .

Look at neighbors of vertex i, probability such a neighbor has degree k + 1 is approximately,

$$\frac{(k+1)\sum_{j\in[n]}\mathbb{1}_{\{D_j=k+1\}}}{\sum_{j\in[n]}D_j}$$

6/16

Local structure configuration model for $\tau > 2$

Start from random vertex i which has degree D_i .

Look at neighbors of vertex i, probability such a neighbor has degree k + 1 is approximately,

$$\frac{(k+1)\sum_{j\in[n]}\mathbb{1}_{\{D_j=k+1\}}/n}{\sum_{j\in[n]}D_j/n}\longrightarrow \frac{(k+1)\mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \quad \text{ for } \tau > 2.$$

6/16

Local structure configuration model for $\tau > 2$

Start from random vertex i which has degree D_i .

Look at neighbors of vertex i, probability such a neighbor has degree k + 1 is approximately,

$$\frac{(k+1)\sum_{j\in[n]}\mathbb{1}_{\{D_j=k+1\}}/n}{\sum_{j\in[n]}D_j/n}\longrightarrow \frac{(k+1)\mathbb{P}[D=k+1]}{\mathbb{E}[D]}, \quad \text{for } \tau > 2.$$

Let *K* have distribution (the *forward degree* distribution),

$$\mathbb{P}[K = k] = \frac{(k+1)\mathbb{P}[D = k+1]}{\mathbb{E}[D]}$$

Locally tree-like structure: a branching process with offspring *D* in first generation and *K* in further generations. Also, *uniformly sparse*.

6/16

Definition of the Ising model

On a graph G_n , the *ferromagnetic Ising model* is given by the following Boltzmann distributions over $\sigma \in \{-1, +1\}^n$,

$$\mu(\sigma) = \frac{1}{Z_n(\beta, B)} \exp\left\{\beta \sum_{(i,j)\in E_n} \sigma_i \sigma_j + \sum_{i\in[n]} B\sigma_i\right\},\,$$

where

- $\beta \ge 0$ is the inverse temperature;
- B is the external magnetic field;
- $Z_n(\beta, B)$ is a normalization factor (the *partition function*).

Critical temperature

Define the *magnetization* on G_n as

$$m_n(\beta, B) = \langle \frac{1}{n} \sum_{i=1}^n \sigma_i \rangle_\mu.$$

Then, the *spontaneous magnetization*,

$$M = \lim_{B \downarrow 0} \lim_{n \to \infty} m_n \begin{cases} = 0, & \beta < \beta_c; \\ > 0, & \beta > \beta_c. \end{cases}$$

The *critical inverse temperature* β_c is given by

 $\mathbb{E}[K](\tanh \beta_c) = 1.$

Note that, for $\tau \in (2, 3)$, we have $\mathbb{E}[K] = \infty$, so that $\beta_c = 0$.

Theorem (Dembo, Montanari, '08) For a locally tree-like and uniformly sparse graph sequence $\{G_n\}_{n\geq 1}$ with $\mathbb{E}[K] < \infty$, the pressure per particle,

$$\psi_n(\beta, B) = \frac{1}{n} \log Z_n(\beta, B),$$

converges, for $n \to \infty$, to $\varphi_h(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh(\beta) - \frac{\mathbb{E}[D]}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))]$ + $\mathbb{E}\left[\log\left(e^{B}\prod_{i=1}^{D}\left\{1+\tanh(\beta)\tanh(h_{i})\right\}\right]\right]$ $+e^{-B}\prod_{i=1}^{D}\left\{1-\tanh(\beta)\tanh(h_i)\right\}\right)\right].$ TU/e Technische Universiteit / department of mathematics and computer science

Theorem (DGvdH, '09)

Let $\tau > 2$. Then, in the configuration model, the pressure per particle,

$$\psi_n(\beta, B) = \frac{1}{n} \log Z_n(\beta, B),$$

converges almost surely, for $n \to \infty$, to

$$\varphi_{h}(\beta, B) \equiv \frac{\mathbb{E}[D]}{2} \log \cosh(\beta) - \frac{\mathbb{E}[D]}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_{1}) \tanh(h_{2}))] + \mathbb{E}\left[\log\left(e^{\beta} \prod_{i=1}^{D} \{1 + \tanh(\beta) \tanh(h_{i})\} + e^{-\beta} \prod_{i=1}^{D} \{1 - \tanh(\beta) \tanh(h_{i})\}\right)\right].$$

10/16

Tree recursion

Proposition

Let K_t be i.i.d. like K and B > 0. Then, the recursion

$$h^{(t+1)} \stackrel{d}{=} B + \sum_{i=1}^{K_t} \operatorname{atanh}(\operatorname{tanh}(\beta) \operatorname{tanh}(h_i^{(t)})),$$

has a unique fixed point h_{β}^* .

Interpretation: the *effective field* of a vertex in a *tree* expressed in that of its neighbors.

Uniqueness shown by showing that effect of *boundary conditions* on generation *t* vanishes for $t \to \infty$.

This is done using *monotonicity* in β and *B* and *concavity* in *B* of the magnetization in the ferromagnetic Ising model.

$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(\mathbf{0}, \mathbf{B}) + \int_0^\varepsilon \frac{\partial}{\partial \beta'} \psi_n(\beta', \mathbf{B}) \mathrm{d}\beta' + \int_\varepsilon^\beta \frac{\partial}{\partial \beta'} \psi_n(\beta', \mathbf{B}) \mathrm{d}\beta' \right]$$

$$= \varphi_h(\mathbf{0}, \mathbf{B}) + \mathbf{0} + \lim_{\varepsilon \downarrow \mathbf{0}} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', \mathbf{B}) \mathrm{d}\beta'$$

 $= \varphi_h(\beta, \mathbf{B}).$

$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(\mathbf{0}, \mathbf{B}) + \int_0^\varepsilon \frac{\partial}{\partial \beta'} \psi_n(\beta', \mathbf{B}) d\beta' + \int_\varepsilon^\beta \frac{\partial}{\partial \beta'} \psi_n(\beta', \mathbf{B}) d\beta' \right]$$

$$= \varphi_h(\mathbf{0}, \mathbf{B}) + \mathbf{0} + \lim_{\varepsilon \downarrow \mathbf{0}} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', \mathbf{B}) \mathrm{d}\beta'$$

 $= \varphi_h(\beta, \mathbf{B}).$

12/16

$$=\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(0, B) + \int_0^\varepsilon \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' + \int_\varepsilon^\beta \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' \right]$$

$$= \varphi_h(\mathbf{0}, \mathbf{B}) + \mathbf{0} + \lim_{\varepsilon \downarrow \mathbf{0}} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', \mathbf{B}) \mathrm{d}\beta'$$

 $= \varphi_h(\beta, \mathbf{B}).$

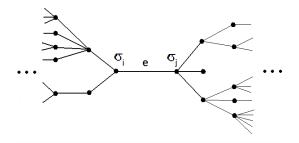
$$= \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\psi_n(0, B) + \int_0^\varepsilon \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' + \int_\varepsilon^\beta \frac{\partial}{\partial \beta'} \psi_n(\beta', B) d\beta' \right]$$

$$= \varphi_h(\mathbf{0}, \mathbf{B}) + \mathbf{0} + \lim_{\varepsilon \downarrow \mathbf{0}} \int_{\varepsilon}^{\beta} \frac{\partial}{\partial \beta'} \varphi(\beta', \mathbf{B}) \mathrm{d}\beta'$$

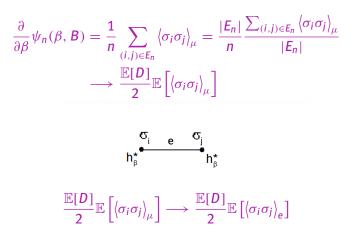
 $= \varphi_h(\beta, \mathbf{B}).$

Derivative of pressure

$$\frac{\partial}{\partial\beta}\psi_n(\beta,B) = \frac{1}{n}\sum_{(i,j)\in E_n} \langle\sigma_i\sigma_j\rangle_\mu = \frac{|E_n|}{n}\frac{\sum_{(i,j)\in E_n} \langle\sigma_i\sigma_j\rangle_\mu}{|E_n|}$$
$$\longrightarrow \frac{\mathbb{E}[D]}{2}\mathbb{E}\left[\langle\sigma_i\sigma_j\rangle_\mu\right]$$



Derivative of pressure



13/16

Derivative of φ

$$\frac{\partial}{\partial\beta}\varphi_{h_{\beta}^{*}}(\beta,B) = \frac{\mathbb{E}[D]}{2}\mathbb{E}\left[\left\langle\sigma_{i}\sigma_{j}\right\rangle_{e}\right].$$

 $\varphi_h(\beta, B) = \frac{\mathbb{E}[D]}{2} \log \cosh(\beta) - \frac{\mathbb{E}[D]}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))] \\ + \mathbb{E}\left[\log\left(e^B \prod_{i=1}^{D} \left\{1 + \tanh(\beta) \tanh(h_i)\right\} + e^{-B} \prod_{i=1}^{D} \left\{1 - \tanh(\beta) \tanh(h_i)\right\}\right)\right]$

- Show that we can ignore dependence of h^{*}_β on β;
 (*Interpolation* techniques. Split analysis into two parts, one for *small degrees* and one for *large degrees*)
- Compute the derivative with assuming β fixed in h^{*}_β.

Distances in power-law random graphs

Let H_n be the graph distance between two *uniformly chosen connected* vertices in the configuration model. Then:

For $\tau > 3$ and $\mathbb{E}[K] > 1$ (vdH, Hooghiemstra, Van Mieghem, '05),

 $H_n \sim \log n$,

▶ For $\tau \in (2, 3)$ (vdH, Hooghiemstra, Znamenski, '07),

 $H_n \sim \log \log n;$

15/16

Distances in power-law random graphs

Let H_n be the graph distance between two *uniformly chosen connected* vertices in the configuration model. Then:

For $\tau > 3$ and $\mathbb{E}[K] > 1$ (vdH, Hooghiemstra, Van Mieghem, '05),

 $H_n \sim \log n$,

▶ For $\tau \in (2, 3)$ (vdH, Hooghiemstra, Znamenski, '07),

 $H_n \sim \log \log n;$

For $\tau > 3$ and $\tau \in (2, 3)$ similar results hold for the diameter of linear preferential attachment models (D, vdH, Hooghiemstra, '09).

15/16

Critical exponents

Predictions by physicists (Dorogovtsev, Goltsev, Mendes, '02 and Leone, Vázquez, Vespignani, Zecchina, '02).

Critical behavior for $\beta \downarrow \beta_c$ of magnetization m, specific heat δC and susceptibility χ .

	т	δC	χ
$\tau > 5$	$\sim (eta - eta_c)^{1/2}$	jump at β_c	$\sim (\beta - \beta_c)^{-1}$
$\tau \in (3, 5)$	$\sim (eta - eta_{c})^{1/(au - 3)}$	$\sim (eta - eta_{ m c})^{(5- au)/(au-3)}$	
$\tau \in (2,3)$	$\sim (eta - eta_c)^{1/(3- au)}$	$\sim (eta - eta_{c})^{(au-1)/(3- au)}$	$\sim (eta - eta_c)^1$

