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Preface

About this book

This book is aimed at the junior or senior-level student of mathe-
matics, science, and engineering. It can also be used as an amusing
summer course for graduate students by a judicious use of the starred
exercises and proofs. Chapters 1–7 form a leisurely undergraduate
semester course.

The difficulty of the book ramps up gradually — Chapter 8 is
at a strong senior level, while Chapters 9 and 10 (Weak and Strong
Sufficiency) and Chapter 11 (Corner Points) are more abstract and
at very strong senior or graduate level.

The charm of this subject is found in its classical applications
accessible to any student with calculus. We have attempted to down-
play (at first) the technical details, to instead develop technique. As
a result, even a modestly equipped student can carry away a strong
understanding of the subject based on practice with the calculations.
The starred proofs employ advanced machinery, but are sketched in
an expository style that may be comprehensible to undergraduates.
It is our belief that such exposure entices students into advanced
study.

Why this book?

There is no modern text at this level that is accessible to students
armed only with calculus. There are of course the fine classic Dover
editions of Fox, Sagan, Weinstock, Ewing, and Gelfand/Fomin. But
these books are all showing their age, and, unlike our book, none
of these incorporate a simple introduction to optimal control, bang-
bang, Pontryagin’s maximum principle, or LQ control design. Some
of the most entertaining applications of the calculus of variations are
found in optimal control.

To the instructor

At times much of the detail is thrown into the Exercises. This is to
facilitate flow and better display the attractive big picture. You may
include some of these solutions in your lectures or assign them in
some proportion consonant with your degree of commitment to the
Moore system. A disk of solutions is available upon request.
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