Calculus of Variations

Mechanics, Control, and Other Applications

Charles R. MacCluer Michigan State University

> ©2003 Prentice Hall Upper Saddle River New Jersey 07458

Library of Congress information

This book is dedicated to my wife Ann.

Contents

Preface	ix
Acknowledgments	х
1 Preliminaries	
1.1 Directional Derivatives and Gradients	1
1.2 Calculus Rules	3
1.3 Contour Surfaces and Sublevel Sets	5
1.4 Lagrange Multipliers	7
1.5 Convexity	9
Exercises	12
2 Optimization	
2.1 Mathematical Programming	17
2.2 Linear Programming	23
2.3 Statistical Problems	24
2.4 Variational Problems	24
Exercises	25
3 Formulating Variational Problems	
3.1 Shortest Distance between Two Points (CVP 1)	31
3.2 Graph with Least Surface of Revolution (CVP 2)	32
3.3 The Catenary (CVP 3)	32
3.4 The Brachistochrone (CVP 4)	33
3.5 Cruise-Climb (CVP 5)	34
3.6 Shapes of Minimum Resistance (CVP 6)	35
3.7 Hamilton's Principle	37
3.8 Isoperimetric Problems	39
Exercises	40
4 The Euler-Lagrange Equation	
4.1 One Degree of Freedom	45
4.2 Two Special Cases: no y , no x	48
4.3 Multiple Degrees of Freedom	52
4.4 The Hamiltonian	54
4.5 A Closer Look	58
Exercises	60

5	Constrained Problems	
	5.1 Dido's Problem	67
	5.2 Statement of the Problem	68
	5.3 The Inverse Function Theorem	68
	5.4 The Euler-Lagrange Equation for Constrained Problems	69
	5.5 Example Applications	71
	5.6 Multiple Degrees of Freedom	76
	5.7 Non-Integral Constraints	78
	5.8 Hamilton's Principle with Constraints	81
	Exercises	86
6	Extremal Surfaces	
	6.1 A Soap Film (CVP 15)	91
	6.2 Stable Flows (CVP 17)	96
	6.3 Schrödinger's Equation (CVP 18)	97
	6.4 Eigenvalue Problems	98
	6.5 Rayleigh-Ritz Numerics	99
	Exercises	104
7	Optimal Control	
	7.1 A Rolling Cart (OCP 1)	109
	7.2 General Formulation	113
	7.3 Reinvestments (OCP 2)	114
	7.4 Average Voltage (OCP 3)	115
	7.5 A Time-Optimal Problem (OCP 4)	117
	7.6 The Bang-Bang Principle	119
	7.7 The Maximum Principle	120
	7.8 Example Applications	124
	Exercises	129
8	The LQ Problem	
	8.1 The Problem Statement	139
	8.2 State Feedback	142
	8.3 Stability	143
	8.4 The LQR Problem	146
	8.5 A Tracking Servo	152
	Exercises	157

9 Weak Sufficiency	
9.1 Weak versus Strong Extrema	161
9.2 First and Second Variations	162
9.3 In Application	165
9.4 The Integrand $p\eta'^2 + q\eta^2$	170
9.5 Weak Local Sufficiency	173
Exercises	177
10 Strong Sufficiency	
10.1 The Goal	185
10.2 Flows	186
10.3 Flows of the Euler-Lagrange Equation	190
10.4 The <i>E</i> -Function and Strong Sufficiency	192
10.5 The Existence of Flows	196
Exercises	205
11 Corner Points	
11.1 Corners and Extremals	209
11.2 First Erdmann Corner Condition	211
11.3 The Figurative	213
11.4 Second Erdmann Corner Condition	216
11.5 A Summary of Necessary Conditions	221
Exercises	222
Appendix A. The Inverse Function Theorem	223
Appendix B. Picard's Theorem	228
Appendix C. The Divergence Theorem	232
Appendix D. A MatLab Cookbook	233
References	251
Index	255

vii

viii

Preface

About this book

This book is aimed at the junior or senior-level student of mathematics, science, and engineering. It can also be used as an amusing summer course for graduate students by a judicious use of the starred exercises and proofs. Chapters 1–7 form a leisurely undergraduate semester course.

The difficulty of the book ramps up gradually — Chapter 8 is at a strong senior level, while Chapters 9 and 10 (Weak and Strong Sufficiency) and Chapter 11 (Corner Points) are more abstract and at very strong senior or graduate level.

The charm of this subject is found in its classical applications accessible to any student with calculus. We have attempted to downplay (at first) the technical details, to instead develop technique. As a result, even a modestly equipped student can carry away a strong understanding of the subject based on practice with the calculations. The starred proofs employ advanced machinery, but are sketched in an expository style that may be comprehensible to undergraduates. It is our belief that such exposure entices students into advanced study.

Why this book?

There is no modern text at this level that is accessible to students armed only with calculus. There are of course the fine classic Dover editions of Fox, Sagan, Weinstock, Ewing, and Gelfand/Fomin. But these books are all showing their age, and, unlike our book, none of these incorporate a simple introduction to optimal control, bangbang, Pontryagin's maximum principle, or LQ control design. Some of the most entertaining applications of the calculus of variations are found in optimal control.

To the instructor

At times much of the detail is thrown into the Exercises. This is to facilitate flow and better display the attractive big picture. You may include some of these solutions in your lectures or assign them in some proportion consonant with your degree of commitment to the Moore system. A disk of solutions is available upon request.

Acknowledgments

One great joy of University life is having living resources available for the mere asking. I thank my colleagues David E. Blair, William C. Brown, Leonid Freidovich, Milan Miklavcic, Boris Mordukhovich, Fedor Nazarov, Sheldon Newhouse, Jacob Plotkin, Clark Radcliffe, Ralph Svetic, Lal Tummala, Clifford Weil, Peter R. Wolenski, Lijian Yang, Vera Zeidan, and Zhengfang Zhou.

Many students helped shape this book. They suffered through the early write-ups and typos, and often suggested valuable improvements. I thank the undergraduate students Daniel Brian Bouk, Lynne M. Evasic, Leonard Joseph Ford, Tanya Christine Hopkalo, Harold Leatherman Hunt, Rachel C. McCormick, Megan Jayne Mercer, John E. Mills, Christopher Thomas Morling, Jessica A. Munger, Jacquelyn M. Ormiston, Lindsay J. D. Radke, Stephanie L. Semann, Michael J. Stinson, Pieter C. vanRooyen, Julie K. Waibel, and Mengmeng Yu.

My special thanks go to the graduate students Michelle L. Boorom, Matthew T. Brenneman, Alberto A. Condori, Chinthaka V. Hettitantri, Ki-Moon Lee, Laura M. Stadelman, Steven W. Sy, Brian J. Vessell, and Jared Wasburn-Moses.

The reviewers of this book offered many helpful suggestions. For their insights I thank Mark Coffey of the Colorado School of Mines, Gregor Kovacic of Rensselaer Polytechnic Institute, Boris Mordukovich of Wayne State University, and Eduardo Sontag of Rutgers University.

Finally, I thank George Lobell, Executive Editor, Prentice Hall, for his continued help and support.