
Chapter 2

The Calculus of Variations

label:
chap:vp2

2.1 Introduction

In this chapter we consider the particular variational principle defining the shortest
distance between two points in a plane. It is well known that this shortest path is the
straight line joining them, however, it is almost always easiest to understand a new idea
by applying it to a simple, familiar problem; so here we introduce the essential ideas of
the Calculus of Variations by finding the equation of this line. The algebra may seem
overcomplicated for this simple problem, but the same theory can be applied to far
more complicated problems, and we shall see in chapter 3 the most important equation
of the Calculus of Variations, the Euler-Lagrange equation, can be derived with almost
no extra effort.

The chapter ends with a description of some of the problems that can be formulated
in terms of variational principles, some of which will be solved later in the course.

The approach adopted is intuitive, that is we assume that functionals behave like
functions of n real variables. This is exactly the approach used by Euler (1707-1783)
and Lagrange (1736-1813) in their original analysis and it can be successfully applied to
many important problems. However, it masks a number of problems, all to do with the
subtle difference between infinite and finite dimensional spaces: some of these problems
will be discussed later in the course. Initially, however, they are ignored in order to
progress.

2.2 The shortest distance between two points in a

plane
label:
sec:vp2-shortThe distance between two points Pa = (a,A) and Pb = (b, B) in the Oxy-plane along a

given curve, defined by the function y(x), is given by the functional label:
eq:vp2-01

S[y] =

∫ b

a

dx
√

1 + y′(x)2. (2.1)

The curve must pass through the end points, so y(x) satisfies the boundary conditions,
y(a) = A and y(b) = B. We shall usually assume that y′(x) is continuous on (a, b).
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74 CHAPTER 2. THE CALCULUS OF VARIATIONS

We require the equation of the function that makes S[y] stationary, that is we need
to understand how the values of the functional S[y] change as the path between Pa and
Pb varies. These ideas are introduced here, and developed in chapter 3, using analogies
with the theory of functions of many real variables.

2.2.1 The stationary distance
label:
sec:vp2-stat In the theory of functions of several real variables a stationary point is defined to be

one at which the values of the function at all neighbouring points are ‘almost’ the same
as at the stationary point. To be precise, if G(x) is a function of n real variables,
x = (x1, x2, · · · , xn), we compare values of G at x and the nearby point x + εξ, where
|ε| � 1 and |ξ| = 1. Taylor’s expansion gives,label:

eq:vp2-03a

G(x + εξ) −G(x) = ε

n
∑

k=1

∂G

∂xk
ξk +O(ε2). (2.2)

A stationary point is defined to be one for which the term O(ε) is zero for all ξ. This
gives the familiar conditions for a point to be stationary, namely ∂G/∂xk = 0 for
k = 1, 2, · · · , n.

For a functional we proceed in the same way. That is, we choose adjacent paths
joining Pa to Pb and compare the values of S along these paths. If a path is represented
by a differentiable function y(x), adjacent paths may be represented by y(x) + εh(x),
where ε is a real variable and h(x) another differentiable function. Since all paths must
pass through Pa and Pb, we require y(a) = A, y(b) = B and h(a) = h(b) = 0; otherwise
h(x) is arbitrary. The difference

δS = S[y + εh] − S[y],

may be considered as a function of the real variable ε, for arbitrary y(x) and h(x) and
for small values of ε, |ε| � 1. When ε = 0, δS = 0 and for small |ε| we expect δS to be
proportional to ε; in general this is true as seen in equation 2.3 below.

However, there may be some paths for which δS is proportional to ε2, rather than ε.
These paths are special and we define these to be the stationary paths, curves or sta-

tionary functions. Thus a necessary condition for a path y(x) to be a stationary path
is that

S[y + εh] − S[y] = O(ε2),

for all suitable h(x). The equation for the stationary function y(x) is obtained by
examining this difference more carefully.

The distances along these adjacent curves are

S[y] =

∫ b

a

dx
√

1 + y′(x)2, and S[y + εh] =

∫ b

a

dx
√

1 + [y′(x) + εh′(x)]2.

We proceed by expanding the integrand of S[y + εh] in powers of ε, retaining only the
terms proportional to ε. One way of making this expansion is to consider the integrand
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as a function of ε and to use Taylor’s series to expand in powers of ε,

√

1 + (y′ + εh′)2 =
√

1 + y′ 2 + ε

[

d

dε

√

1 + (y′ + εh′)2
]

ε=0

+O(ε2),

=
√

1 + y′ 2 + ε
y′h′

√

1 + y′ 2
+O(ε2).

Substituting this expansion into the integral and rearranging gives the difference be-
tween the two lengths, label:

eq:vp2-04

S[y + εh] − S[y] = ε

∫ b

a

dx
y′(x)

√

1 + y′(x)2
h′(x) +O(ε2). (2.3)

This difference depends upon both y(x) and h(x), just as for functions of n real variables
the differenceG(x+εξ)−G(x), equation 2.2, depends upon both x and ξ, the equivalents
of y(x) and h(x) respectively.

Since S[y] is stationary it follows, by definition, that label:
eq:vp2-05

∫ b

a

dx
y′(x)

√

1 + y′(x)2
h′(x) = 0 (2.4)

for all suitable functions h(x).
We shall see in chapter 3 that because 2.4 holds for all those functions h(x) for

which h(a) = h(b) = 0 and h′(x) is continuous, this equation is sufficient to determine
y(x) uniquely. Here, however, we simply show that if label:

eq:vp2-06

y′(x)
√

1 + y′(x)2
= α = constant for all x, (2.5)

then the integral in equation 2.4 is zero for all h(x). Assuming that 2.5 is true, equa-
tion 2.4 becomes

∫ b

a

dxαh′(x) = α {h(b) − h(a)} = 0 since h(a) = h(b) = 0.

In section 3.3 we show that condition 2.5 is necessary as well as sufficient for equation 2.4
to hold.

Equation 2.5 shows that y′(x) = m, where m is a constant, and integration gives
the general solution,

y(x) = mx+ c

for another constant c: this is the equation of a straight line as expected. The constants
m and c are determined by the conditions that the straight line passes through Pa

and Pb: label:
eq:vp2-07

y(x) =
B −A

b− a
x+

Ab−Ba

b− a
. (2.6)

This analysis shows that the functional S[y] defined in equation 2.1 is stationary along
the straight line joining Pa to Pb. We have not shown that this gives a minimum
distance: this is proved in exercise 2.2. label:

ex:vp2-02
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Exercise 2.1
Use the above method on the functional

S[y] =

Z

1

0

dx
p

1 + y′(x), y(0) = 0, y(1) = B > −1,

to show that the stationary function is the straight line y(x) = Bx, and that the
value of the functional on this line is S[y] =

√
1 + B.

2.2.2 The shortest path: local and global minima
label:
sec:vp2-local In this section we show that the straight line 2.6 gives the minimum distance. For

practical reasons this analysis is divided into two stages. First, we show that the
straight line is a local minimum of the functional, using an analysis that is generalised
in chapter 6 to functionals. Second, we show that, amongst the class of differentiable
functions, the straight line is actually a global minimum: this analysis makes use of
special features of the integrand.

The distinction between local and global extrema is illustrated in figure 2.1. Here
we show a function f(x), defined in the interval a ≤ x ≤ b, having three stationary
points B, C and D, two of which are minima the other being a maximum. It is clear
from the figure that at the stationary point D, f(x) takes its smallest value in the
interval — so this is the global minimum. The function is largest at A, but this point
is not stationary — this is the global maximum. The stationary points at B is a local
minimum, because here, f(x) is smaller than at any point in the neighbourhood of B:
likewise the points C and D are local maxima and minima, respectively. The adjective
local is frequently omitted. In some texts local extrema are named relative extrema.label:

f:vp2-local

f  x ( )
C

A

B

D

E

a b
x

Figure 2.1 Diagram to illustrate the difference be-
tween local and global extrema.

It is clear from this example that to classify a point as a local extrema requires an
examination of the function values only in the neighbourhood of the point. Whereas,
determining whether a point is a global extrema requires examining all values of the
function; this type of analysis usually invokes special features of the function.

The local analysis of a stationary point of a function, G(x), of n variables proceeds
by making a second-order Taylor expansion about a point x = a,

G(a + εξ) = G(a) + ε

n
∑

k=1

∂G

∂xk
ξk +

1

2
ε2

n
∑

k=1

n
∑

j=1

∂2G

∂xk∂xj
ξkξj + · · · ,

where all derivatives are evaluated at x = a. If G(x) is stationary at x = a then all
first derivatives are zero. The nature of the stationary point is usually determined by
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the behaviour of the second-order term. For a stationary point to be a local minimum
it is necessary for the quadratic terms to be strictly positive for all ξ, that is

n
∑

j=1

n
∑

k=1

∂2G

∂xk∂xj
ξkξj > 0 for all ξk , ξj , k, j = 1, 2, · · · , n,

with |ξ| = 1. The stationary point is a local maximum if this quadratic form is strictly
negative. For large n it is usually difficult to determine whether these inequalities are
satisfied, although there are well defined tests which are described in chapter 6.

For a functional we proceed in the same way: the nature of a stationary path
is usually determined by the second-order expansion. If S[y] is stationary then, by
definition,

S[y + εh] − S[y] =
1

2
∆2[y, h]ε

2 +O(ε3)

for some quantity ∆2[y, h], depending upon both y and h; special cases of this expansion
are found in exercise 2.2 and 2.3. Then S[y] is a local minimum if ∆2[y, h] > 0 for all
h(x), and a local maximum if ∆2[y, h] < 0 for all h(x). Normally it is difficult to
establish these inequalities, and the general theory is described in chapter 6. For the
functional defined by equation 2.1, however, the proof is straight-forward; the following
exercise guides you through it. label:

ex:vp2-03

Exercise 2.2

(a) Use Taylor’s series 1.26 (page 28) to obtain the following expansion in ε,

p

1 + (α + εβ)2 =
p

1 + α2 +
αβε√
1 + α2

+
β2ε2

2(1 + α2)3/2
+ O(ε3).

(b) Use this result to show that if y(x) is the straight line defined in equation 2.6
and S[y] the functional 2.1, then

S[y + εh] − S[y] =
ε2

2(1 + m2)3/2

Z b

a

dxh′(x)2, m =
B − A

b − a
.

Deduce that the straight line is a local minimum for the distance between Pa

and Pb.

label:
ex:vp2-04

Exercise 2.3
In this exercise the functional defined in exercise 2.1 is considered in more detail.

By expanding the integrand of S[y + εh] to second order in ε show that, if y(x) is
the stationary path, then

S[y + εh] = S[y] − ε2

8(1 + B)3/2

Z

1

0

dxh′(x)2, B > −1.

Deduce that the path y(x) = Bx, B > −1, is a local maximum of this functional.

Now we show that the straight line is also a global minimum. This analysis relies on a
special property of the integrand, which will also be useful later on in chapter 6. This
property is a consequence of the Cauchy-Schwarz inequality, given on page 37. label:

ex:vp2-04a
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Exercise 2.4
Use the Cauchy-Schwarz inequality (page 37) with a = (1, z) and b = (1, z + u)
to show that

p

1 + (z + u)2
p

1 + z2 ≥ 1 + z2 + zu

with equality only if u = 0. Hence show that
p

1 + (z + u)2 −
p

1 + z2 ≥ zu√
1 + z2

.

Using this inequality with z = y′(x) and u = εh′(x) we see that

S[y + εh] − S[y] ≥ ε

∫ 1

0

dx
y′

√

1 + y′ 2
h′.

If y(x) is the stationary path, y = x, then since y′ = 1 and h(0) = h(1) = 0 we have
S[y + εh] ≥ S[y] for all nonzero h(x).

This analysis did not assume that |ε| is small, and since all admissible paths can
be expressed in the form x + εh(x), we have shown that the straight line is the global
minimum, for the class of differentiable functions.

An observation

Problems involving shortest distances on surfaces other than a plane illustrate other
features of variational problems. Thus if we replace the plane by the surface of a sphere
then the shortest distance between two points on the surface is the arc length of a
great circle joining the two points — that is the circle created by the intersection of
the spherical surface and the plane passing through the two points and the centre of
the sphere; this problem is examined in exercise 4.20 (page 173). Now, for most points,
there are two stationary paths corresponding to the long and the short arcs of the great
circle. However, if the points are at opposite ends of a diameter, there are infinitely
many shortest paths. This example shows that solutions to variational problems may
be complicated.

In general, the stationary paths between two points on a surface are named geodesics.
For a plane surface the only geodesics are straight lines; for a sphere, most pairs of points
are joined by just two geodesics that are the segments of the great circle through the
points. For other surfaces there may be several stationary paths: an example of the
consequences of such complications is described next.

2.2.3 Gravitational Lensing

The general theory of relativity, discovered by Einstein (1879-1955), shows that the path
taken by light from a source to an observer is along a geodesic on a surface in a four-
dimensional space. In this theory gravitational forces are represented by distortions
to this surface. The theory therefore predicts that light is “bent” by gravitational
forces, a prediction that was first observed in 1919 by Eddington (1882-1944) in his
measurements of the position of stars during a total solar eclipse: these observations
provided the first direct confirmation of Einstein’s general theory of relativity.

The departure from a straight line path depends upon the mass of the body be-
tween the source and observer. If it is sufficiently massive, two images may be seen as
illustrated schematically in figure 2.2.label:

f:vp2-glense
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EarthGalaxy

Quasar

Quasar Image

Quasar Image

Light paths

Figure 2.2 Diagram showing how an intervening galaxy can sufficiently dis-
tort a path of light from a bright object, such as a quasar, to provide two
stationary paths and hence two images. Many examples of such multiple im-
ages, and more complicated but similar optical effects, have now been observed.
Usually there are more than two stationary paths.

2.3 Two generalisations

2.3.1 Functionals depending only upon y
′(x)

label:
sec:vp2-131The functional 2.1 (page 73) depends only upon the derivative of the unknown function.

Although this is a special case it is worth considering in more detail in order to develop
the notation we need.

If F (z) is a differentiable function of z then a general functional of the form of 2.1 is
label:
eq:vp2-10

S[y] =

∫ b

a

dxF (y′), y(a) = A, y(b) = B, (2.7)

where F (y′) simply means that in F (z) all occurrences of z are replaced by y′(x).
Thus in the previous example F (z) =

√
1 + z2 so F (y′) =

√

1 + y′(x)2. Note that the
symbols F (y′) and F (y′(x)) denote the same function.

The difference between the functional evaluated along y(x) and the adjacent paths
y(x) + εh(x), where |ε| � 1 and h(a) = h(b) = 0, is label:

eq:vp2-11

S[y + εh] − S[y] =

∫ b

a

dx
{

F (y′ + εh′) − F (y′)
}

. (2.8)

Now we need to express F (y′+εh′) as a series in ε; assuming that F (z) is differentiable,
Taylor’s theorem gives

F (z + εu) = F (z) + εu
dF

dz
+O(ε2).

The expansion of F (y′+εh′) is obtained from this simply by the replacements z → y′(x)
and u→ h′(x), which gives label:

eq:vp2-12

F (y′ + εh′) − F (y′) = εh′(x)
d

dy′
F (y′) +O(ε2) (2.9)

where the notation dF/dy′ means label:
eq:vp2-12a
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d

dy′
F (y′) =

dF

dz

∣

∣

∣

∣

z=y′(x)

. (2.10)

For instance, if F (z) =
√

1 + z2 then

dF

dz
=

z√
1 + z2

and
dF

dy′
=

y′(x)
√

1 + y′(x)2
.

label:
ex:vp2-05

Exercise 2.5

Find the expressions for dF/dy′ when

(a) F (y′) = (1 + y′ 2)1/4, (b) F (y′) = sin y′, (c) F (y′) = exp(y′).

Substituting the difference 2.9 into the equation 2.8 giveslabel:
eq:vp2-13

S[y + εh] − S[y] = ε

∫ b

a

dx h′(x)
d

dy′
F (y′) +O(ε2). (2.11)

The functional S[y] is stationary if the term O(ε) is zero for all suitable functions h(x).
As before we give a sufficient condition, deferring the proof that it is also necessary. In
this analysis it is important to remember that F (z) is a given function and that y(x)
is an unkown function that we need to find. Observe that iflabel:

eq:vp2-14

d

dy′
F (y′) = α = constant (2.12)

then

S[y + εh] − S[y] = εα
(

h(b) − h(a)
)

+O(ε2) = O(ε2) since h(a) = h(b) = 0.

In general equation 2.12 is true only if y′(x) is also constant, and hence

y(x) = mx+ c and therefore y(x) =
B −A

b− a
x+

Ab−Ba

b− a
,

the last result following from the boundary conditions y(a) = A and y(b) = B.
This is the same solution as given in equation 2.6. Thus, for this class of functional,

the stationary function is independent of the form of the integrand although its nature
is not, see for instance exercise 2.17 (page 96).

The exceptional example is when F (z) is linear, in which case the value of S[y]
depends only upon the end points and not the values of y(x) in between, as shown in
the following exercise.label:

ex:vp2-05a

Exercise 2.6

If F (z) = Cz + D, where C and D are constants, by showing that the value of

the functional S[y] =
R b

a
dxF (y′) is independent of the chosen path, deduce that

equation 2.12 does not imply that y′(x) = constant.

What is the effect of making either, or both C and D a function of x?
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2.3.2 Functionals depending upon x and y
′(x)

Now consider the slightly more general functionallabel:
eq:vp2-20

S[y] =

∫ b

a

dxF (x, y′), y(a) = A, y(b) = B, (2.13)

where the integrand F (x, y′) depends explicitly upon the two variables x and y′. The
difference in the value of the functional along adjacent paths is label:

eq:vp2-21

S[y + εh] − S[y] =

∫ b

a

dx
{

F (x, y′ + εh′) − F (x, y′)
}

. (2.14)

In this example F (x, z) is a function of two variables and we require the expansion

F (x, z + εu) = F (x, z) + εu
∂F

∂z
+O(ε2)

where Taylor’s series for functions of two variables is used. Comparing this with the
expression in equation 2.9 we see that the only difference is that the derivative with
respect to y′ has been replaced by a partial derivative. As before, replacing z by y′(x)
and u by h′(x), equation 2.14 becomes label:

eq:vp2-22

S[y + εh] − S[y] = ε

∫ b

a

dx h′(x)
∂

∂y′
F (x, y′) +O(ε2). (2.15)

If y(x) is the stationary path it is necessary that

∫ b

a

dx h′(x)
∂

∂y′
F (x, y′) = 0 for all h(x).

As before a sufficient condition for this is that Fy′(x, y′) = constant, which gives the
following differential equation for y(x), label:

eq:vp2-23

∂

∂y′
F (x, y′) = c, y(a) = A, y(b) = B, (2.16)

where c is a constant. This is the equivalent of equation 2.12, but now the explicit
presence of x in the equation means that y′(x) = constant is not a solution. label:

ex:vp2-06

Exercise 2.7
Consider the functional

S[y] =

Z

1

0

dx
p

1 + x + y′ 2, y(0) = A, y(1) = B.

Show that the function y(x) defined by the relation,

y′(x) = c
p

1 + x + y′(x)2,

where c is a constant, makes S[y] stationary. By expressing y′(x) in terms of x
solve this equation to show that

y(x) = A +
(B − A)

(23/2 − 1)

“

(1 + x)3/2 − 1
”

.
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2.4 Notation
label:
sec:vp2-notaIn the previous sections we used the notation F (y′) to denote a function of the derivative

of y(x) and proceeded to treat y′ as an independent variable, so that the expression
dF/dy′ had the meaning defined in equation 2.10. This notation and its generalisation
are very important in subsequent analysis; it is therefore essential that you are familiar
with it and can use it.

Consider a function F (x, u, v) of three variables, for instance F = x
√
u2 + v2, and

assume that all necessary partial derivatives of F (x, u, v) exist. If y(x) is a function of
x we may form a function of x with the substitutions u→ y(x), v → y′(x), thus

F (x, u, v) becomes F (x, y, y′).

Depending upon circumstances F (x, y, y′) can be considered either as a function of a

single variable x, as when evaluating the integral
∫ b

a dxF (x, y(x), y′(x)), or as a function
of three independent variables (x, y, y′). In the latter case the first partial derivatives
with respect to y and y′ are just

∂F

∂y
=

∂F

∂u

∣

∣

∣

∣

u=y,v=y′

and
∂F

∂y′
=
∂F

∂v

∣

∣

∣

∣

u=y,v=y′

.

Because y depends upon x we may also form the total derivative of F (x, y, y′) with
respect to x using the chain rule, equation 1.21 (page 24)label:

eq:vp2-not01

dF

dx
=
∂F

∂x
+
∂F

∂y
y′(x) +

∂F

∂y′
y′′(x). (2.17)

In the particular case F (x, u, v) = x
√
u2 + v2 these rules give

∂F

∂x
=
√

y2 + y′ 2,
∂F

∂y
=

xy
√

y2 + y′ 2
,

∂F

∂y′
=

xy′
√

y2 + y′ 2
.

Similarly, the second-order derivatives are

∂2F

∂y2
=

∂2F

∂u2

∣

∣

∣

∣

u=y,v=y′

,
∂2F

∂y′ 2
=
∂2F

∂v2

∣

∣

∣

∣

u=y,v=y′

and
∂2F

∂y∂y′
=

∂2F

∂u∂v

∣

∣

∣

∣

u=y,v=y′

.

Because you must be able to use this notation we suggest that you do all the following
exercises before proceeding.label:

ex:vp2-08

Exercise 2.8

If F (x, y′) =
p

x2 + y′ 2 find
∂F

∂x
,

∂F

∂y
,

∂F

∂y′
,

dF

dx
and

d

dx

„

∂F

∂y′

«

. Also, show that,

d

dx

„

∂F

∂y′

«

=
∂

∂y′

„

dF

dx

«

.

label:
ex:vp2-08b

Exercise 2.9
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Show that for an arbitrary differentiable function F (x, y, y′)

d

dx

„

∂F

∂y′

«

=
∂2F

∂y′ 2
y′′ +

∂2F

∂y∂y′
y′ +

∂2F

∂x∂y′
.

Hence show that
d

dx

„

∂F

∂y′

«

6= ∂

∂y′

„

dF

dx

«

,

with equality only if F does not depend explicitly upon y.

label:
ex:vp2-09

Exercise 2.10
Use the first identity found in exercise 2.9 to show that the equation

d

dx

„

∂F

∂y′

«

− ∂F

∂y
= 0

is equivalent to the second-order differential equation

∂2F

∂y′ 2
y′′ +

∂2F

∂y∂y′
y′ +

∂2F

∂x∂y′
− ∂F

∂y
= 0.

Note: the first equation will later be seen as crucial to the general theory described
in chapter 3. The fact that it is a second-order differential equation means that
unique solutions can be obtained only if two initial or two boundary conditions
are given. Also the fact that the coefficient of y′′(x) is ∂2F/∂y′ 2 is very important
in the general theory of the existence of solutions of this type of equation.

label:
ex:vp2-10

Exercise 2.11

(a) If F (y, y′) = y
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(b) By solving the equation y2(y′/y)′ = 1 show that a non-zero solution of

d

dx
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∂y′

«

− ∂F

∂y
= 0 is y =

1

A
cosh(Ax + B),

for some constants A and B. Hint, let y be the independent variable and define a
new variable z by the equation yz(y) = dy/dx to obtain an expression for dy/dx
that can be integrated.

2.5 Examples of functionals
label:
sec:vp2-examplesIn this section we describe a variety of problems that can be formulated in terms of

functionals, with solutions that are stationary paths of these functionals. This list is
provided because it is likely that you will not be familiar with these descriptions and
will be unaware of the wide variety of problems for which variational principles are
useful, and sometimes essential. You should not spend long on this section if time is
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short; in this case you you should aim at obtaining a rough overview of the examples.
Indeed, you may move directly to chapter 3 and return to this section at a later date,
if necessary.

In each of the following sub-sections a different problem is described and the relevant
functional is written down; some of these are derived later. In compiling this list one
aim has been to describe a reasonably wide range of applications: if you are unfamiliar
with the underlying physical ideas behind any of these examples, do not worry because
they are not an assessed part of the course. Another aim is to show that there are
subtly different types of variational problems, for instance the isoperimetric and the
catenary problems, described on pages 90 and 91 respectively.

2.5.1 The brachistochrone
label:
sec:vp2-brach Given two points Pa = (a,A) and Pb = (b, B) in the same vertical plane, as in the

diagram below, we require the shape of the smooth wire joining Pa to Pb such that a
bead sliding on the wire under gravity, with no friction, and starting at Pa with a given
speed shall reach Pb in the shortest possible time.label:

f:vp2-brach
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Figure 2.3 The curved line joining Pa to Pb is
a segment of a cycloid. In this diagram the axes
are chosen to give a = A = 0.

The name given to this curve is the brachistochrone, from the Greek, brachystos, short-
est, and chronos, time.

If the y-axis is vertical it can be shown that the time taken along the curve y(x) is

T [y] =

∫ b

a

dx

√

1 + y′(x)2

C − 2gy(x)
, y(a) = A, y(b) = B,

where g is the acceleration due to gravity and C a constant depending upon the initial
speed of the particle. This expression is derived in section 4.2.

This problem was first considered by Galileo (1564-1642) in his 1638 work Two

New Sciences, but lacking the necessary mathematical methods he concluded, erro-
neously, that the solution is the arc of a circle passing vertically through Pa; exercise 4.4
(page 156) gives part of the reason for this error.

It was John Bernoulli (1667-1748), however, who made the problem famous when in
June 1696 he challenged the mathematical world to solve it. He followed his statement
of the problem by a paragraph reassuring readers that the problem was very useful in
mechanics, that it is not the straight line through Pa and Pb and that the curve is well
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known to geometers. He also stated that he would show that this is so at the end of
the year provided no one else had.

In December 1696 Bernoulli extended the time limit to Easter 1697, though by this
time he was in possession of Leibniz’s solution, sent in a letter dated 16th June 1696,
Leibniz having received notification of the problem on 9th June. Newton also solved the
problem quickly: apparently1 the letter from Bernoulli arrived at Newton’s house, in
London, on 29th January 1697 at the time when Newton was Warden of the Mint. He
returned from the Mint at 4pm, set work on the problems and had solved it by the early
hours of the next morning. The solution was returned anonymously, to no avail with
Bernoulli stating upon receipt “The lion is recognised by his paw”. Further details of
this history and details of these solutions may be found in Goldstine (1980, chapter 1).

The curve giving this shortest time is a segment of a cycloid, which is the curve traced
out by a point fixed on the circumference of a vertical circle rolling, without slipping,
along a straight line. The parametric equations of the cycloid shown in figure 2.3 are

x = a(θ − sin θ), y = −a(1− cos θ),

where a is the radius of the circle: these equations are derived in section 4.2.1, where
other properties of the cycloid are discussed.

Other, historically important names, are the isochronous curve and the tautochrone.
A tautochrone is a curve such that a particle travelling along it under gravity reaches
a fixed point in a time independent of its starting point; a cycloid is a tautochrone
besides being a brachistochrone. Isochronal means “equal times” so isochronous curves
and tautochrones are the same.

There are many variations of the brachistochrone problem. Euler2 considered the
effect of resistance proportional to v2n, where v is the speed and n an integer. The prob-
lem of a wire with Coulomb friction, however, was not considered until 19753. Both
these extensions require the use of Lagrange multipliers and are described in chapter 10.
Another variation was introduced by Lagrange4 who allowed the end point Pb, in fig-
ure 2.3 to lie on a given surface and this introduces different boundary conditions that
the cycloid needs to satisfy: the simpler variant in which the motion remains in the
plane and one or both end points lie on given curves is treated in chapter 8.

2.5.2 Minimal surface of revolution

Here the problem is to find a curve y(x) passing through two given points Pa = (a,A)
and Pb = (b, B), with A ≥ 0 and B > 0, as shown in the diagram, such that when
rotated about the x-axis the area of the curved surface formed is a minimum. label:

f:vp2-minsur

1This anecdote is from the records of Catherine Conduitt, née Barton, Newton’s niece who acted
as his housekeeper in London, see Newton’s Apple by P Aughton, 2003 (Weidenfeld and Nicolson),
page 201.

2Chapter 3 of his 1744 opus, The Method of Finding Plane Curves that Show Some Property of

Maximum or Mininum...
3Ashby A, Brittin W E, Love W F and Wyss W, 1975 Brachitochrone with Coulomb Friction, Amer

J Physics 43 902-5
4Essay on a new method.. published in Vol II of the Miscellanea Taurinensai, the memoirs of the

Turin Academy.
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Figure 2.4 Diagram showing the cylindrical shape pro-
duced when a curve y(x), joining (a, A) to (b, B), is rotated
about the x-axis.

The area of this surface is shown in section 4.3 to be

S[y] = 2π

∫ b

a

dx y(x)
√

1 + y′(x)2,

and we shall see that this problem has solutions that can be expressed in terms of
differentiable functions only for certain combinations of A, B and b− a.

2.5.3 The minimum resistance problem
label:
sec:vp2-minres An important problem in the history of the Calculus of Variations is the determination

of the shape of a solid of revolution meeting with least resistance to its motion along
its axis through a stationary fluid.

Newton was interested in the problem of fluid resistance and performed many exper-
iments aimed at determining its dependence on various parameters, such as the velocity
through the fluid. These experiments were described in Book II of Principia (1687)5;
an account of Newton’s ideas is given by Smith (2000)6. It is to Newton that we owe
the idea of the drag coefficient, CD , a dimensionless number allowing the force on a
body moving through a fluid to be written in the form

FR =
1

2
CDρAfv

2,

where Af is the frontal area of the body, ρ the fluid density7 and v = |v| where v, is
the relative velocity of the body and the fluid. For modern cars CD has values between
0.30 and 0.45, with frontal areas of about 30 ft2.

Newton distinguished two types of forces:
a) those imposed on the front of the body which oppose the motion, and
b) those at the back of the body resulting from the disturbance of the fluid and which
may be in either direction.
He also considered two types of fluid:

5The full title is Philopsophiae naturalis Principia Mathematica, (Mathematical Principles of nat-
ural Philosophy.

6Smith G E 2000 Fluid Resistance: Why Did Newton Change His Mind?, in The Foundations of

Newtonian Scholarship.
7Note that this suggests that the 30◦C change in temperature between summer and winter changes

FR by roughly 10%.
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a) rarefied fluids comprising non-interacting particles spread out in space, such as a gas,
and
b) continuous fluids, comprising particles packed together so that each is in contact
with its neighbours, such as a liquid.

The ideas sketched below are most relevant to rarefied fluids and ignore the second
type of force. They were used by Newton in 1687 to derive a functional for which the
stationary path yields, in theory, a surface of minimum resistance. This solution does
not, however, agree with observation largely because the physical assumptions made
are too simple, in particular the demarcation of forces into the two types listed above
is unhelpful. Moreover, Weierstrass showed that this stationary path does not yield
a minimum. Nevertheless, the general problem is important and Newton’s approach,
and the subsequent variants, are of historical and mathematical importance: we shall
mention a few of these variants after describing the basic problem.

It is worth noting that the problem of fluid resistance is difficult and was not properly
understood until the early part of the 20th century. In 1752 d’Alembert published a
paper, Essay on a New theory of the resistance of Fluids, in which he derived the partial
differential equations describing the motion of an ideal, incompressible inviscid fluid;
the solution of these equations showed that resisting force was zero, regardless of the
shape of the body: this was in contradiction to observations and was henceforth known
as d’Alembert’s paradox. It was not resolved until Prandtl (1875-1953) developed the
theory of boundary layers in 1904. This shows how fluids of relatively small viscosity,
such as water or air, may be treated mathematically by taking account of friction only
in the region where essential, namely in the thin layer that exists in the neighbourhood
of the solid body. This concept was introduced in 1904, but many decades passed before
its ramifications were understood: an account of these ideas can be found in Schlichting
(1955)8 and modern account of d’Alembert’s paradox can be found in Landau and
Lifshitz (1959)9.

We now return to the main problem, which is to determine a functional for the
fluid resistance. In deriving this it is necessary to make some assumptions about the
resistance and this, it transpires, is why the stationary path is not a minimum. The
main result is given by equation 2.20, and you may ignore the derivation if you wish.

It is assumed that the resistance is proportional to the square of the velocity. To
see why, consider a small plane area moving through a fluid comprising many isolated
stationary particles, with density ρ: the area of the plane is δA and it is moving with
velocity v along its normal, as seen in the left hand side of figure 2.5.

In order to derive a simple formula for the force on the area δA it is helpful to
imagine the fluid as comprising many particles, each of mass m and all stationary. If
there are N particles per unit volume, the density is ρ = mN . In the small time δt the
area δA sweeps through a volume vδtδA, so NvδtδA particles collide with the area, as
shown schematically on the left hand side of figure 2.5. label:

f:vp2-a01

8Schlichting H Boundary Layer Theory (McGraw-Hill, New York).
9Landau L D and Lifshitz E M Fluid mechanics (Pergamon)
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Figure 2.5 Diagram showing the motion of a small area, δA, through a rari-
fied gas.

For an elastic collision between a very large mass (that of which δA is the small surface
element) with velocity v, and a small initially stationary mass, m, the momentum
change of the light particle is 2mv — you may check this by doing exercise 2.22,
although this is not part of the course. Thus in a time δt the total momentum transfer
is in the opposite direction to v,

∆P = (2mv) × (NvδtδA).

Newton’s law equates force with the rate of change of momentum, so the force on the
area opposing the motion is, since ρ = mN ,label:

eq:vp2-a01

δF =
∆P

δt
= 2ρv2δA. (2.18)

Equation 2.18 is a justification for the v2-law. If the normal, ON , to the area δA is at
an angle ψ to the velocity, as in the right hand side side of figure 2.5, where the arrows
denote the fluid velocity relative to the body, then the formula 2.18 is modified in two
ways. First, the significant area is the projection of δA onto v, so δA → δA cosψ.
Second, the fluid particles are elastically scattered through an angle 2ψ (because the
angle of incidence equals the angle of reflection), so the momentum transfer along the
direction of travel is v(1 + cos 2ψ) = 2v cos2 ψ: hence 2v → 2v cos2 ψ, and the force in
the direction (−v) is

δF = 2ρv2 cos3 ψ δA.

We now apply this formula to find the force on a surface of revolution. We define Oy
to be the axis: consider a segment CD of the curve in the Oxy-plane, with normal PN
at an angle ψ to Oy, as shown in the left-hand panel of figure 2.6.label:

f:vp2-a02
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Figure 2.6 Diagram showing change in velocity of a particle colliding with the
element CD, on the left, and the whole curve which is rotated about the y-axis,
on the right.

The force on the ring formed by rotating the segment CD about Oy is, because of axial
symmetry, in the y-direction. The area of the ring is 2πxδs, where δs is the length of
the element CD, so the magnitude of the force opposing the motion is

δF = 2πxδs
(

2ρv2 cos3 ψ
)

,

The total force on the curve in figure 2.6 is obtained by integrating from x = 0 to x = a,
and is given by the functional, label:

eq:vp2-a02

F [y] = 4πρv2

∫ x=a

x=0

ds x cos3 ψ, y(0) = A, y(a) = 0. (2.19)

But dy/dx = tanψ and cosψ = ds/dx, so that label:
eq:vp2-a03

F [y] = 4πρv2

∫ a

0

dx
x

1 + y′ 2
, y(0) = A, y(a) = 0. (2.20)

For a disc of area Af , y′(x) = 0, and this reduces to F = 2Afρv
2. Newton’s problem is

to find the path making this functional a minimum.
Variations of this problem were considered by Newton: one is the curve CAB, shown

in figure 2.7, rotated about Oy.
label:
f:vp2-a03
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Figure 2.7 Diagram showing the modified geometry considered by Newton.
Here the variable x1 is an unkown, the line AC is parallel to the x-axis and
the coordinates of C are (0, y1).

In this problem the position B is fixed, but the position of A is not; it is merely
constrained to be on the line y = y1, parallel to Ox and intersecting the y-axis at y1.
The resisting force is now given by the functional label:

eq:vp2-a04
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F1[y]

2πρv2
= x2

1 + 2

∫ a

x1

dx
x

1 + y′ 2
, y(x1) = y1, y(a) = 0. (2.21)

Now the path y(x) and the number x1 are to be chosen to make the functional a
minimum.

Problems such as this, where the position of one (or both) of the end points are
also to be determined are known as variable end point problems and are dealt with in
chapter 8.

2.5.4 A problem in navigation
label:
sec:vp2-nav Given a river with straight, parallel banks a distance a apart and a boat that can travel

with constant speed c in still water, the problem is to cross the river in the shortest
time, starting and landing at given points.

If the y-axis is chosen to be the left bank, the starting point to be the origin and the
water is assumed to be moving parallel to the banks with speed v(x), a known function
of the distance from the left-hand bank, then the time of passage along the path y(x)
is, assuming c > max(v(x)),

T [y] =

∫ a

0

dx

√

c2(1 + y′ 2) − v(x)2 − v(x)y′

c2 − v(x)2
, y(0) = 0, y(a) = A,

where the final destination is a distance A along the right hand bank. The derivation of
this result is set in exercise 2.21, one of the harder exercises at the end of this chapter.

2.5.5 The isoperimetric problem
label:
sec:vp2-isoper Among all curves, represented by functions with continuous derivatives, that join the

two points Pa and Pb in the plane and have given length L, determine that which
encompasses the largest area, S[y] shown in the diagramlabel:

f:vp2-isop
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Figure 2.8 Diagram showing the area, S[y], under a
curve of given length joining Pa to Pb.

This is a classic problem discussed by Pappus of Alexandria in about 300 AD. Pappus
showed, in Book V of his collection, that of two regular polygons having equal perimeters
the one with the greater number of sides has the greater area. In the same book he
demonstrates that for a given perimeter the circle has a greater area than does any
regular polygon. This work seems to follow closely the earlier work of Zenodorus (circa
180 BC): extant fragments of his work include a proposition that of all solid figures, the
surface areas of which are equal, the sphere has the greatest volume.
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Returning to figure 2.8, a modern analytic treatment of the problem requires a
differentiable function y(x) satisfying y(a) = A, y(b) = B, such that the area,

S[y] =

∫ b

a

dx y(x)

is largest when the length of the curve,

L[y] =

∫ b

a

dx
√

1 + y′(x)2,

is given. It transpires that a circular arc is the solution.
This problem differs from the first three because an additional constraint — the

length of the curve — is imposed. We consider this type of problem in chapter 10.

2.5.6 The catenary
label:
sec:vp2-catenA catenary is the shape assumed by an inextensible chain of uniform density hanging

between supports at both ends. In the figure we show an example of such a curve when
the points of support, (−a,A) and (a,A), are at the same height. label:

f:vp2-cat
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Figure 2.9 The catenary formed by a uniform chain
hanging between two points at the same height.

If the lowest point of the chain is taken as the origin, the catenary equation is label:
eq:vp2-int02

y = c
(

cosh
(x

c

)

− 1
)

(2.22)

for some constant c determined by the length of the chain and the value of a.
If a curve is described by a differentiable function y(x) it can be shown, see exer-

cise 2.18, that the potential energy E of the chain is proportional to the functional

S[y] =

∫ a

−a

dx y
√

1 + y′ 2.

The curve that minimises this functional, subject to the length of the chain L =
∫ a

−a dx
√

1 + y′ 2 remaining constant, is the shape assumed by the hanging chain. In
common with the previous example, the catenary problem involves a constraint — again
the length of the chain — and is dealt with in chapter 10.
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2.5.7 Fermat’s principle

Light and other forms of electromagnetic radiation are wave phenomena. However, in
many common circumstances light may be considered to travel along lines joining the
source to the observer: these lines are named rays and are often straight lines. This is
why most shadows have distinct edges and why eclipses of the Sun are so spectacular.
In a vacuum, and normally in air, these rays are straight lines and the speed of light in
a vacuum is c ' 2.9 × 1010 cm/sec, independent of its colour. In other uniform media,
for example water, the rays also travel in straight lines, but the speed is different: if
the speed of light in a uniform medium is cm then the refractive index is defined to be
the ratio n = c/cm. The refractive index usually depends on the wave length: thus for
water it is 1.333 for red light (wave length 6.50×10−5 cm) and 1.343 for blue light (wave
length 7.5×10−5 cm); this difference in the refractive index is one cause of rainbows. In
non-uniform media, in which the refractive index depends upon the position, light rays
follow curved paths. Mirages are one consequence of a position-dependent refractive
index.

A simple example of the ray description of light is the reflection of light in a plane
mirror. In the diagram the source is S and the light ray is reflected from the mirror at
R to the observer at O. The plane of the mirror is perpendicular to the page and it is
assumed that the plane SRO is in the page.label:

f:vp2-mirr

θ1 θ2
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h2S
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O

Figure 2.10 Diagram showing light travelling from a source S to
an observer O, via a reflection at R. The angles of incidence and of
reflection are defined to be θ1 and θ2, respectively.

It is known that light travels in straight lines and is reflected from the mirror at a point
R as shown in the diagram. However, without further information the position of R is
unknown. Observations, however, show that the angle of incidence, θ1, and the angle
of reflection, θ2, are equal. This law of reflection was known to Euclid (circa 300 BC)
and Aristotle (384-322 BC); but it was Hero of Alexandria (circa 125 BC) who showed
by geometric argument that the equality of the angles of incidence and reflection is a
consequence of the Aristotelean principle that nature does nothing the hard way; that
is, if light is to travel from the source S to the observer O via a reflection in the mirror
then it travels along the shortest path.

This result was generalised by the French mathematician Fermat (1601-1665) into
what is now known as Fermat’s principle which states10 that the path taken by light

10Fermat’s original statement was that light travelling between two points seeks a path such that the
number of waves is equal, as a first approximation, to that in a neighbouring path. This formulation
has the form of a variational principle, which is remarkable because Fermat announced this result in
1658, before the calculus of either Newton or Leibniz was developed.
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rays is that which minimises the time of passage. For the mirror, because the speed
along SR and RO is the same this means that the distance along SR plus RO is a
minimum. If AB = d and AR = x, the total distance travelled by the light ray depends
only upon x and is

f(x) =
√

x2 + h2
1 +

√

(d− x)2 + h2
2.

This function has a minimum when θ1 = θ2, that is when the angle of incidence, θ1,
equals the angle of reflection, θ2. This result is proved in exercise 2.13.

In general, for light moving in the Oxy-plane, in a medium with refractive index
n(x, y), with the source at the origin and observer at (a,A) the time of passage, T ,
along an arbitrary path y(x) joining these points is

T [y] =
1

c

∫ a

0

dxn(x, y)
√

1 + y′ 2, y(0) = 0, y(a) = A.

This follows because the time taken to travel along an element of length δs is n(x, y)δs/c
and δs =

√

1 + y′(x)2 δx. If the refractive index, n(x, y), is constant then this integral
reduces to the integral 2.1 and the path of a ray is a straight line, as would be expected.

Fermat’s principle can be used to show that for light reflected at a mirror the angle
of incidence equals the angle of reflection. For light crossing the boundary between two
media it gives Snell’s law,

sinα1

sinα2
=
c1
c2
,

where α1 and α2 are the angles between the ray and the normal to the boundary and
ck is the speed of light in the media, as shown in figure 2.11: in water the speed of light
is approximately c2 = c1/1.3, where c1 is the speed of light in air, so 1.3 sinα2 = sinα1. label:

f:vp2-snell
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Figure 2.11 Diagram showing the refraction of light at the surface of wa-
ter. The angles of incidence and refraction are defined to be α2 and α1

respectively; these are connected by Snell’s law.

In figure 2.11 the observer at O sees an object S in a pond and the light ray from S
to O travels along the two straight lines ON and NS, but the observer perceives the
object to be at S′, on the straight line ON . This explains why a stick put partly into
water appears bent.

2.5.8 Coordinate free formulation of Newton’s equations

Newton’s laws of motion accurately describe a significant portion of the physical world,
from the motion of large molecules to the motion of galaxies. However, Newton’s original
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formulation is usually difficult to apply to even quite simple mechanical systems and
hides the mathematical structure of the equations of motion, which is important for the
advanced developments in dynamics and for finding approximate solutions. It transpires
that in many important circumstances Newton’s equations of motion can be expressed
as a variational principle the solution of which are the equations of motion. This
reformulation took some years to accomplish and was originally motivated by Snell’s
law and Fermat’s principle, that minimises the time of passage, but also by the ancient
philosophical belief in the “Economy of Nature”; for a brief overview of these ideas the
introduction of the book by Yourgrau and Mandelstam (1965) should be consulted.

The first variational principle for dynamics was formulated in 1744 by Maupertuis
(1698-1759), but in the same year Euler (1707-1783) described the same principle more
precisely. In 1760 Lagrange (1736-1813) clarified these ideas, by first reformulating
Newton’s equations of motion into a form now known as Lagrange’s equations of mo-
tion: these are equivalent to Newton’s equations but easier to use because the form
of the equations is independent of the coordinate system used — this basic property
of variational principles is discussed in chapter 5 — and this allows easier use of more
general coordinate systems.

The next major step was taken by Hamilton (1805-1865), in 1834, who cast La-
grange’s equations as a variational principle; confusingly, we now name this Lagrange’s
variational principle. Hamilton also generalised this theory to lay the foundations for
the development of modern physics that occurred in the early part of the 20th century.
These developments are important because they provide a coordinate-free formulation
of dynamics which emphasises the underlying mathematical structure of the equations
of motion, which is important in helping to understand how solutions behave.

Summary

These few examples provide some idea of the significance of variational principles. In
summary, they are important for three distinct reasons

• A variational principle is often the easiest or the only method of formulating a
problem.

• Often conventional boundary value problems may be re-formulated in terms of a
variational principle which provides a powerful tool for approximating solutions.

• A variational formulation provides a coordinate free method of expressing the
laws of dynamics, allowing powerful analytic techniques to be used in ordinary
Newtonian dynamics. The use of variational principles also paved the way for
the formulation of dynamical laws describing motion of objects moving at speeds
close to that of light (special relativity), particles interacting through gravita-
tional forces (general relativity) and the laws of the microscopic world (quantum
mechanics).



2.6. MISCELLANEOUS EXERCISES 95

2.6 Miscellaneous exercises
label:
ex:vp2-01e

Exercise 2.12

Functionals do not need to have the particular form considered in this chapter.
The following expressions also map functions to real numbers:

(a) D[y] = y′(1) + y(1)2;

(b) K[y] =

Z

1

0

dxa(x)
h

y(x) + y(1)y′(x)
i

;

(c) L[y] =
h

xy(x)y′(x)
i

1

0

+

Z

1

0

dx
h

a(x)y′(x) + b(x)y(x)
i

, where a(x) and b(x)

are prescribed functions;

(d) S[y] =

Z

1

0

ds

Z

1

0

dt
`

s2 + st
´

y(s)y(t).

Find the values of these functionals for the functions y(x) = x2 and y(x) = cos πx
when a(x) = x and b(x) = 1.

label:
ex:vp2-02e

Exercise 2.13

Show that the function

f(x) =
q

x2 + h2

1
+

q

(d − x)2 + h2

2
,

where h1, h2 are defined in figure 2.10 (page 92) and x and d denote the lengths
AR and AB respectively, is stationary when θ1 = θ2 where

sin θ1 =
x

p

x2 + h2

1

, sin θ2 =
d − x

p

(d − x)2 + h2

2

.

Show that at this stationary value f(x) has a minimum.

label:
ex:vp2-03e

Exercise 2.14

Consider the functional

S[y] =

Z

1

0

dx y′
p

1 + y′, y(0) = 0, y(1) = B > −1.

(a) Show that the stationary function is the straight line y(x) = Bx and that the
value of the functional on this line is S[y] = B

√
1 + B.

(b) By expanding the integrand of S[y + εh] to second order in ε, show that

S[y + εh] = S[y] +
(4 + 3B)ε2

8(1 + B)3/2

Z

1

0

dxh′(x)2, B > −1,

and deduce that on this path the function has a minimum.

label:
ex:vp2-04e
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Exercise 2.15
Using the method described in the text, show that the functionals

S1[y] =

Z b

a

dx
`

1 + xy′
´

y′ and S2[y] =

Z b

a

dxxy′ 2,

where b > a > 0, y(b) = B and y(a) = A are both stationary on the same curve,
namely

y(x) = A + (B − A)
ln(x/a)

ln(b/a)
.

Explain why the same function makes both functionals stationary.
label:
ex:vp2-05e

Exercise 2.16
In this exercise the theory developed in section 2.3.1 is extended. The function
F (z) has a continuous second derivative and the functional S is defined by the
integral

S[y] =

Z b

a

dxF (y′).

(a) Show that

S[y + εh] − S[y] = ε

Z b

a

dx
dF

dy′
h′(x) +

1

2
ε2

Z b

a

dx
d2F

dy′ 2
h′(x)2 + O(ε3),

where h(a) = h(b) = 0.

(b) Show that if y(x) is chosen to make dF/dy′ constant then the functional is
stationary.

(c) Deduce that this stationary path makes the functional either a maximum or a
minimum, provided F ′′(y′) 6= 0.

label:
ex:vp2-06e

Exercise 2.17
Show that the functional

S[y] =

Z

1

0

dx
`

1 + y′(x)2
´1/4

, y(0) = 0, y(1) = B,

is stationary for the straight line y(x) = Bx.

In addition, show that this straight line gives a minimum value of the functional
only if B <

√
2, otherwise it gives a maximum.

Harder exercises
label:
ex:vp2-22e Exercise 2.18

If a uniform, flexible, inextensible chain of length L is suspended between two
supports having the coordinates (−b, B) and (a,A), with the y-axis pointing ver-
tically upwards, show that, if the shape assumed by the chain is described by the
differentiable function y(x), then its length is given by L[y] =

R a

−b
dx

p

1 + y′ 2

and its potential energy by

E[y] = gρ

Z a

−a

dx y
p

1 + y′ 2, y(−b) = B, y(a) = A,

where ρ is the line-density of the chain and g the acceleration due to gravity.
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label:
ex:vp2-23e

Exercise 2.19
This question is about the shortest distance between two points on the surface of a
right-circular cylinder, so is a generalisation of the theory developed in section 2.2.

(a) If the cylinder axis coincides with the z-axis we may use the polar coordinates
(ρ, φ, z) to label points on the cylindrical surface, where ρ is the cylinder radius.
Show that the Cartesian coordinates of a point (x, y) are given by x = ρ cos φ, y =
ρ sin φ and hence that the distance between two adjacent points on the cylinder,
(ρ, φ, z) and (ρ, φ + δφ, z + δz) is, to first-order, given by δs2 = ρ2δφ2 + δz2.

(b) A curve on the surface may be defined by prescribing z as a function of φ.
Show that the length of a curve from φ = φ1 to φ2 is

L[z] =

Z φ2

φ1

dφ
p

ρ2 + z′(φ)2.

(c) Deduce that the shortest distance on the cylinder between the two points
(ρ, 0, 0) and (ρ, α, ζ) is along the curve z = ζφ/α.

label:
ex:vp2-24e

Exercise 2.20
An inverted cone has its apex at the origin and axis along the z-axis. Let α be
the angle between this axis and the sides of the cone, and define a point on the
conical surface by the coordinates (ρ, φ), where ρ is the perpendicular distance to
the z-axis and φ is the polar angle measured from the x-axis.

Show that the distance on the cone between adjacent points (ρ, φ) and (ρ+δρ,φ+
δφ) is, to first-order,

δs2 = ρ2δφ2 +
δρ2

sin2 α
.

Hence show that if ρ(φ), φ1 ≤ φ ≤ φ2, is a curve on the conical surface then its
length is

L[ρ] =

Z φ2

φ1

dφ

r

ρ2 +
ρ′ 2

sin2 α
.

label:
ex:vp2-21e

Exercise 2.21
A straight river of uniform width a flows with velocity (0, v(x)), where the axes
are chosen so the left-hand bank is the y-axis and where v(x) > 0. A boat can
travel with constant speed c > max(v(x)) relative to still water. If the starting
and landing points are chosen to be the origin and (a,A), respectively, show that
the path giving the shortest time of crossing is given by minimising the functional

T [y] =

Z a

0

dx

p

c2(1 + y′(x)2) − v(x)2 − v(x)y′(x)

c2 − v(x)2
, y(0) = 0, y(a) = A.

label:
ex:vp2-25e

Exercise 2.22
In this exercise the basic dynamics required for the derivation of the minimum
resistance functional, equation 2.20, is derived. This exercise is optional, because it
requires knowledge of elementary mechanics which is not part of, or a prerequisite
of, this course.

Consider a block of mass M sliding smoothly on a plane, the cross section of which
is shown in figure 2.12. label:

f:vp2-ex25e
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V v
v’

Before collision

After collision

M

V’

m

Figure 2.12 Diagram showing the velocities of the block and
particle before and after the collision.

The block is moving from left to right, with speed V , towards a small particle of
mass m moving with speed v, such that initially the distance between the particle
and the block is decreasing. Suppose that after the inevitable collision the block
is moving with speed V ′, in the same direction, and the particle is moving with
speed v′ to the right. Use conservation of energy and linear momentum to show
that (V ′, v′) are related to (V, v) by the equations

MV 2 + mv2 = MV ′ 2 + mv′ 2 and MV − mv = MV ′ + mv′.

Hence show that

V ′ = V − 2m

M + m
(V + v) and v′ =

2MV + (M − m)v

M + m
.

Show that in the limit m/M → 0, V ′ = V and v′ = 2V + v and give a physical
interpretation of these equations.
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2.7 Solutions for chapter 2

Solution for Exercise 2.1 label:
ex:vp2-02To find the stationary function we need to compute the difference δS = S[y+ εg]−S[y]

to O(ε), but because the second part of the question requires the second-order term we
evaluate the difference to O(ε2). The difference is

δS =

∫ 1

0

dx
(

√

1 + y′(x) + εg′(x) −
√

1 + y′(x)
)

,

where g(0) = g(1) = 0. But

√

1 + y′(x) + εg′(x) =
√

1 + y′(x)

(

1 +
εg′(x)

1 + y′(x)

)1/2

,

=
√

1 + y′(x)

(

1 +
εg′(x)

2(1 + y′(x))
− ε2

8

(

g′(x)

1 + y′(x)

)2

+ · · ·
)

,

where we have used the binomial expansion (1 + z)1/2 = 1 + 1
2z − 1

8z
2 + · · · , which is

equivalent to using the Taylor series for (1 + z)1/2. Hence

δS =
ε

2

∫ 1

0

dx
g′(x)

√

1 + y′(x)
− ε2

8

∫ 1

0

dx
g′(x)2

(1 + y′(x))3/2
+O(ε3).

The functional is stationary if the first-order term is zero for all g(x), otherwise δS
would change sign with ε. Using the result quoted in the text (after equation 2.5)
— and proved in exercise 3.4 (page 116) — this gives

√

1 + y′(x) =constant, that is
y′(x) =constant and y(x) = αx + β. The boundary conditions then give y = Bx for
the stationary path. With this value for y(x), the integrand is real if B > −1 and has
the value S =

√
1 +B.

Solution for Exercise 2.2 label:
ex:vp2-03

(a) The required expansion is given by first writing the square root as

√

1 + α2 + 2εαβ + ε2β2 =
√

1 + α2

(

1 +
2εαβ

1 + α2
+

ε2β2

1 + α2

)1/2

.

Now use the binomial expansion (1 + z)1/2 = 1 + 1
2z − 1

8z
2 + · · · to give

√

1 +
2εαβ

1 + α2
+

ε2β2

1 + α2
= 1 +

1

2

(

2εαβ

1 + α2
+

ε2β2

1 + α2

)

− 1

8

(

2εαβ

1 + α2
+

ε2β2

1 + α2

)2

+ · · · ,

= 1 +
εαβ

1 + α2
+

ε2β2

2(1 + α2)2
+O(ε3).

Hence
√

1 + (α+ εβ)2 =
√

1 + α2 +
εαβ√
1 + α2

+
ε2β2

2(1 + α2)3/2
+O(ε3).
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(b) With α = y′(x) and β = g′(x) we see, using the argument described in the text,
that the term O(ε) in the expansion of S[y+ εg]−S[y] is zero if y′(x) =constant, hence
the straight line defined by equation 2.6 makes the functional stationary. With this
choice of y(x), α = m and the second term in the above expansion gives the result
quoted. The second-order term is positive for ε 6= 0 and all g(x), so the functional has
a minimum along this line.

Solution for Exercise 2.3label:
ex:vp2-04 The expanson to second order in ε is derived in the solution to exercise 2.1(b). On the

stationary path, y = Bx, the first order terms is, by definition, zero, so we have

δS = − ε2

8(1 +B)3/2

∫ 1

0

dx g′(x)2 < 0, B > −1.

Because this terms is always negative, for sufficiently small |ε| we have S[ys+εg] < S[ys],
where ys(x) = Bx is the stationary path, which is therefore a local maximum.

Solution for Exercise 2.4label:
ex:vp2-04a If a1 = b1 = 1, a2 = z and b2 = z+u the three parts of the Cauchy-Schwarz inequality,

page 37, are

2
∑

k=1

a2
k = 1 + z2,

2
∑

k=1

b2k = 1 + (z + u)2,
2
∑

k=1

akbk = 1 + z2 + zu,

and the first result follows. There is equality only if a = b, that is u = 0. Divide the
first inequality by

√
1 + z2 to derive the second result.

Solution for Exercise 2.5label:
ex:vp2-05

(a) If F (y′) = (1 + y′ 2)1/4 then dF/dy′ = y′/[2(1 + y′ 2)3/4].

(b) If F (y′) = sin y′ then dF/dy′ = cos y′.

(c) Since d
dz (ez) = ez we have dF/dy′ = F .

Solution for Exercise 2.6label:
ex:vp2-05a Consider the difference

δS = S[y + εh] − S[y] =

∫ b

a

dx
[

C(y′ + εh′) +D − (Cy′ +D)
]

= εC

∫ b

a

dx h′(x) = hC
[

h(b) − h(a)
]

.

Since h(a) = h(b) = 0, δS = 0 for any y(x). That is, there is no unique stationary path.
Alternatively, in this case the functional becomes

S[y] =

∫ b

a

dx (Cy′(x) +D) = C [y(b) − y(a)] +D(b− a).
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This depends only upon C, D and the boundaries a and b: the value of the functional
is therefore independent of the chosen path.

If C and D depend upon x then

δS = ε

∫ b

a

dxC(x)h′(x).

The same theory that leads to equation 2.12 shows that δS = 0 for all h(x) if and
only if C(x) = constant, which is the case considered first. In either case there are no
stationary paths.

Solution for Exercise 2.7 label:
ex:vp2-06In this example F (x, v) =

√
1 + x+ v2 and equation 2.16 becomes

v = c
√

1 + x+ v2 where v = y′(x).

Squaring and rearranging this equation gives

(

dy

dx

)2

= a2(1 + x), a2 =
c2

1 − c2
.

Integrating this gives the solution in the form

y(x) −A = a

∫ x

0

dx
√

1 + x =
2a

3

(

(1 + x)3/2 − 1
)

.

The value of a is obtained from the boundary condition y(1) = B, that is

2

3
a =

B −A

23/2 − 1
and hence y(x) = A+

(B −A)

(23/2 − 1)

(

(1 + x)3/2 − 1
)

.

Solution for Exercise 2.8 label:
ex:vp2-08If F (x, y′) =

√

x2 + y′ 2, F is independent of y, we have

∂F

∂y
= 0,

∂F

∂x
=

x
√

x2 + y′ 2
and

∂F

∂y′
=

y′
√

x2 + y′ 2

giving
dF

dx
=
∂F

∂x
+
∂F

∂y
y′ +

∂F

∂y′
y′′ =

x+ y′y′′
√

x2 + y′ 2
.

Since, F does not depend explicitly upon y, we have

d

dx

(

∂F

∂y′

)

=
∂2F

∂y′ 2
y′′ +

∂2F

∂x∂y′

and

∂2F

∂x∂y′
= − xy′

(x2 + y′ 2)3/2
,

∂2F

∂y′ 2
=

1

(x2 + y′ 2)1/2
− y′ 2

(x2 + y′ 2)3/2
=

x2

(x2 + y′ 2)3/2
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which gives

d

dx

(

∂F

∂y′

)

=
x2y′′

(x2 + y′ 2)3/2
− xy′

(x2 + y′ 2)3/2
=

x(xy′′ − y′)

(x2 + y′ 2)3/2
=

x3(y′/x)′

(x2 + y′ 2)3/2
.

Also
∂

∂y′

(

∂F

∂x

)

=
y′′

√

x2 + y′ 2
− (x+ y′y′′)y′

(x2 + y′ 2)3/2
=

x(xy′′ − y′)

(x2 + y′ 2)3/2
,

so, in this case,
d

dx

(

∂F

∂y′

)

=
∂

∂y′

(

∂F

∂x

)

.

Solution for Exercise 2.9label:
ex:vp2-08b The chain rule applied to a function G(x, y(x), y′(x)) has the form

dG

dx
=
∂G

∂y′
dy′

dx
+
∂G

∂y

dy

dx
+
∂G

∂x
.

In this example, where G = ∂F/∂y′, this expression becomes

d

dx

(

∂F

∂y′

)

=
∂

∂y′

(

∂F

∂y′

)

dy′

dx
+
∂

∂y

(

∂F

∂y′

)

dy

dx
+
∂

∂x

(

∂F

∂y′

)

=
∂2F

∂y′ 2
y′′ +

∂2F

∂y′∂y
y′ +

∂2F

∂x∂y

which gives the required expression and is the left hand side of the inequality.
The right hand side of the inequality is

∂

∂y′

(

dF

dx

)

=
∂

∂y′

(

∂F

∂x
+
∂F

∂y
y′ +

∂F

∂y′
y′′
)

=
∂2F

∂x∂y′
+
∂F

∂y
+

∂2F

∂y∂y′
y′ +

∂2F

∂y′ 2
y′′

which differs from the left hand side by the term ∂F/∂y. Thus, only if F is independent
of y are the derivatives equal.

Solution for Exercise 2.10label:
ex:vp2-09 Subtract the term ∂F/∂y to obtain the required result.

Solution for Exercise 2.11label:
ex:vp2-10

(a) Direct differentiation gives

∂F

∂y
=
√

1 + y′ 2,
∂F

∂y′
=

yy′
√

1 + y′ 2
.

Differentiating the second expression gives

∂2F

∂y′ 2
=

y
√

1 + y′ 2
− yy′ 2

(1 + y′ 2)3/2
=

y

(1 + y′ 2)3/2
.
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Using the expression derived in exercise 2.10, namely

z =
d

dx

(

∂F

∂y′

)

− ∂F

∂y
= y′′

∂2F

∂y′ 2
+ y′

∂2F

∂y∂y′
− ∂F

∂y
= 0, since

∂2F

∂x∂y′
= 0,

we obtain

z =
yy′′

(1 + y′ 2)3/2
+

y′ 2

(1 + y′ 2)1/2
−
(

1 + y′ 2
)1/2

,

=
1

(1 + y′ 2)3/2

(

yy′′ +
(

1 + y′ 2
)

y′ 2 −
(

1 + y′ 2
)2
)

=
1

(1 + y′ 2)3/2

(

yy′′ − y′ 2 − 1
)

.

But
d

dx

(

y′

y

)

=
y′′

y
− y′ 2

y2
giving yy′′ − y′ 2 = y2 d

dx

(

y′

y

)

, if y 6= 0,

and hence
d

dx

(

∂F

∂y′

)

− ∂F

∂y
=

1

(1 + y′ 2)3/2

(

y2 d

dx

(

y′

y

)

− 1

)

.

(b) If the left hand side is zero we have

y2 d

dx

(

y′

y

)

= 1 or y2y′
d

dy

(

y′

y

)

= 1.

Now define z = y′/y and consider z to be a function of y, so in the following z ′ = dz/dy
— note this is possible because x may be considered a function of y so y′/y can be
expressed in terms of y. Now put the second equation in the form y3z z′(y) = 1, which
can be integrated directly to give z2 = C2 − y−2, for some constant C. Hence, since
z = y′/y,

dy

dx
=
√

(Cy)2 − 1 giving

∫

dy
√

(Cy)2 − 1
= x+D.

Finally, set Cy = coshφ to give φ = C(x+D), that is y = (1/C) cosh(Cx+CD), which
is the required solution, if C = A and CD = B.

Solution for Exercise 2.12 label:
ex:vp2-01e

(a) The expressions for y(x), y′(x) and D[y] are

y(x) y′(x) D[y]
x2 2x 3

cosπx −π sinπx 1.

(b) If a(x) = x, then

if y(x) = x2, K[y] =

∫ 1

0

dx x(x2 + 2x) =
11

12
, and

if y(x) = cosπx, K[y] =

∫ 1

0

dx x(cos πx+ π sinπx) = −1− 2

π2
.



104 CHAPTER 2. THE CALCULUS OF VARIATIONS

(c) If a(x) = x and b(x) = 1 then

if y(x) = x2, L[y] =
[

2x4
]1

0
+

∫ 1

0

dx
(

3x2
)

= 3 and

if y(x) = cosπx, L[y] =
[

−π
2
x sin 2πx

]1

0
+

∫ 1

0

dx (−πx sinπx + cosπx) = −1.

(d) In the first case, y(x) = x2,

S[x2] =

∫ 1

0

ds

∫ 1

0

dt
(

s2 + st
)

s2t2 =

∫ 1

0

ds

[

1

3
s4t3 +

1

4
s3t4

]1

t=0

=

∫ 1

0

ds

(

1

3
s4 +

1

4
s3
)

=
31

240
.

In the second case, y(x) = cosπx,

S[cosπx] =

∫ 1

0

ds cosπs

∫ 1

0

dt
(

s2 + st
)

cosπt

=

∫ 1

0

ds cosπs

[

s2

π
sinπt+ s

(

t

π
sinπt− 1

π2
cosπt

)]1

0

=
2

π2

∫ 1

0

ds s cosπs = − 4

π4
.

Solution for Exercise 2.13label:
ex:vp2-02e The derivative of f(x) is f ′(x) = x/

√

x2 + h2
1 − (d− x)/

√

(d− x)2 + h2
2. Since

sin θ1 =
AR

SR
=

x
√

x2 + h2
1

, and sin θ2 =
RB

RO
=

d− x
√

(d− x)2 + h2
2

,

where the distances are defined in figure 2.10 (page 92), we see that the distance travelled
by the light is stationary when sin θ1 = sin θ2, that is θ1 = θ2. Further since

f ′′(x) =
h2

1

(x2 + h2
1)

3/2
+

h2
2

((d− x)2 + h2
2)

3/2
> 0,

the stationary point is a minimum.

Solution for Exercise 2.14label:
ex:vp2-03e

(a) We need the difference δS = S[y+ εg]−S[y] where g(0) = g(1) = 0, otherwise g(x)
is an arbitrary continuous function. Now, using the Binomial expansion

√

1 + α+ εβ =
√

1 + α

(

1 +
εβ

2(1 + α)
− ε2β2

8(1 + α)2
+O(ε3)

)

,
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and so

(α+ εβ)
√

1 + α+ εβ = α
√

1 + α

(

1 +
εβ

2(1 + α)
− ε2β2

8(1 + α)2
+ · · ·

)

+εβ
√

1 + α

(

1 +
εβ

2(1 + α)
+ · · ·

)

,

= α
√

1 + α+
εβ(2 + 3α)

2
√

1 + α
+
ε2β2(4 + 3α)

8(1 + α)3/2
+ · · · .

Now substitute α = y′ and β = g′ to obtain

δS = ε

∫ 1

0

dx
3 + 2y′

2
√

1 + y′
g′(x) +

ε2

8

∫ 1

0

dx
4 + 3y′

(1 + y′)3/2
g′(x)2 +O(ε3).

If y(x) is a stationary path of S then the term O(ε) is zero. Since g(0) = g(1) = 0 it
follows, as in the text, that y′(x) =constant is a possible solution. Since y(0) = 0 and
y(1) = B this gives y(x) = Bx and S[y] = B

√
1 +B.

Alternatively, using equation 2.12 (page 80), with F (y′) = y′
√

1 + y′, we see that
the stationary path is given by F ′(y′) = constant and hence y′ = constant, that is
y = mx+ c: since y(0) = 0 and y(1) = B this gives y(x) = Bx.

(b) On substituting Bx for y(x) we see that δS takes the value,

δS =
ε2(4 + 3B)

8(1 +B)3/2

∫ 1

0

dx g′(x)2 +O(ε3).

Then, provided B > −1, δS is positive and the functional is a minumum on the sta-
tionary path.

Solution for Exercise 2.15 label:
ex:vp2-04eObserve that

S1[y] = S2[y] +

∫ b

a

dx y′(x) = S2[y] +B −A.

That is the values of the two functionals differ by a constant, independent of the path.
Hence the stationary paths of the two functionals are the same.

Consider the difference δS = S2[y + εg] − S2[y] where g(a) = g(b) = 0:

δS = 2ε

∫ b

a

dx xy′(x)g′(x) +O(ε2)

so that δS = O(ε2) if xy′(x) = c, where c is a constant. Integrating this equation gives
y(x) = d+ c ln(x/a), where d is another constant. The boundary condition now give

A = d and B = d+ c ln(b/a) and hence y(x) = A+ (B −A)
ln(x/a)

ln(b/a)
.

Solution for Exercise 2.16 label:
ex:vp2-05e
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(a) Consider the difference δS = S[y+ εg]−S[y] where g(a) = g(b) = 0, so we need the
expansion

F (y′ + εg′) = F (y′) + εg′
dF

dy′
+

1

2
ε2g′ 2

d2F

dy′ 2
+ · · · .

Hence

δS = ε

∫ b

a

dx
dF

dy′
g′(x) +

1

2
ε2
∫ b

a

dx
d2F

dy′ 2
g′(x)2 +O(ε3).

(b) If dF/dy′ =constant then δS = O(ε2) so S[y] is stationary. If dF/dy′ =constant
then, provided F (z) is not a constant or a linear function of z, y′(x) is also a constant.

(c) On the stationary path y′(x) is a constant and hence d2F/dy′ 2 is constant and

δS =
1

2
ε2
d2F

dy′ 2

∫ b

a

dx g′(x)2 +O(ε3).

The integral is positive, so δS is positive or negative according as d2F/dy′ 2 is pos-
itive or negative. That is S[y] is either a minimum (d2F/dy′ 2 > 0) or a maximum
(d2F/dy′ 2 < 0). If d2F/dy′ 2 = 0 the nature of the stationary path can be determined
only by expanding to higher order in ε.

Solution for Exercise 2.17label:
ex:vp2-06e In this example F (z) = (1 + z2)1/4, where we have used the notation of the previous

exercise. Thus

F ′(z) =
z

2(1 + z2)3/4
, F ′′(z) =

2 − z2

4(1 + z2)7/4
,

and hence the stationary path is y = Bx and

S[y + εg] − S[y] =
(2 −B2)ε2

8(1 +B2)7/4

∫ 1

0

dx g′(x)2 +O(ε3).

Thus if B <
√

2 the difference is positive for all g(x) and ε, if sufficiently small, so
the functional is a minimum along the line f(x) = Bx. For B >

√
2 the difference is

negative and the functional is a maximum. If B =
√

2 the nature of the stationary path
can be determined only by expanding to higher order in ε.

Solution for Exercise 2.18label:
ex:vp2-22e The potential energy, δV , of an element of the rope of length δs centred on a point x

is given by mass×height× g, that is δV = (ρδs)y(x)g: since δs =
√

1 + y′ 2δx this gives

the total potential energy as E[y] = ρg
∫ a

−b dx y
√

1 + y′ 2 and L[y] =
∫ a

−b dx
√

1 + y′ 2 is
the length of the chain.

Solution for Exercise 2.19label:
ex:vp2-23e

(a) Since, to first-order, δx = −ρδφ sinφ and δy = ρδφ cosφ, the distance is

δs2 = δx2 + δy2 + δz2 = ρ2δφ2 + δz2 = δφ2

(

ρ2 +

(

δz

δφ

)2
)

.
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(b) The length along a curve is just the sum of the small elements which in the limit

δφ→ 0 becomes the integral L[z] =
∫ φ2

φ1
dφ
√

ρ2 + z′(φ)2.

(c) The functional L[z] is the same type as that considered in section 2.3.1 hence its
minimum value is given when z(φ) is a linear function of φ. The boundary conditions
give the result quoted.

Solution for Exercise 2.20 label:
ex:vp2-24eThe Cartesian coordinates of a point (ρ, φ) on the cone are

(x, y, z) =
(

ρ cosφ, ρ sinφ,
ρ

tanα

)

and for the adjacent point at (ρ + δρ, φ + δφ), or (x + δx, y + δy, z + δz) in Cartesian
coordinates, we have, to first order

δx = δρ cosφ− ρδφ sinφ, δy = δρ sinφ+ ρδφ cosφ, δz =
δρ

tanα
.

The distance between the two adjacent points is therefore

δs2 =

(

1 +
1

tan2 α

)

δρ2 + ρ2δφ2 =
δρ2

sin2 α
+ ρ2δφ2 =

(

ρ2 +
1

sin2 α

(

δρ

δφ

)2
)

δφ2.

Hence the distance between the points φ1 and φ2 along the curve ρ(φ) is L[ρ] =
∫ φ2

φ1
dφ
√

ρ2 + ρ′ 2 sin−2 α.

Solution for Exercise 2.21 label:
ex:vp2-21eLet the velocity of the boat relative to the water be (ux, uy), where c2 = u2

x + u2
y, and

we assume that ux is positive. The velocity of the boat relative to land is therefore
(ux, v(x) + uy). If the path taken is y(x) it follows that

dy

dx
=
uy + v

ux
and hence uy = ux

dy

dx
− v.

Also, the time of passage is

T [y] =

∫ a

0

dx

ux
.

Now we need an expression for ux. Since c2 = u2
x + u2

y, we have, on using the above

expression for uy, (y′(x)ux − v)
2

= c2 − u2
x. This rearranges to the quadratic

(

1 + y′ 2
)

u2
x − 2vy′ ux −

(

c2 − v2
)

= 0,

having the solutions

ux =
vy′ ±

√

(vy′)2 + (c2 − v2)(1 + y′ 2)

1 + y′ 2
.

Because c > v this quadratic has one positive and one negative root. We need the
positive root:

ux =
vy′ +

√

(vy′)2 + (c2 − v2)(1 + y′ 2)

1 + y′ 2
=

c2 − v2

√

(vy′)2 + (c2 − v2)(1 + y′ 2) − vy′
.
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Hence

T [y] =

∫ a

0

dx

√

(vy′)2 + (c2 − v2)(1 + y′ 2) − vy′

c2 − v2
=

∫ a

0

dx

√

(1 + y′ 2)c2 − v2 − vy′

c2 − v2
.

Solution for Exercise 2.22label:
ex:vp2-25e The kinetic energy of a particle of mass m and velocity v is 1

2m|v|2 and its linear
momentum is mv. For an elastic collision energy and momentum are conserved, so

MV 2 +mv2 = MV ′ 2 +mv′ 2 Energy conservation
MV −mv = MV ′ +mv′ Linear momentum in the direction of the block motion

From the second equation v′ = M(V − V ′)/m− v, so conservation of energy gives

MV ′ 2 = MV 2 +mv2 −m (v −M(V − V ′)/m)
2

= MV 2 + 2Mv(V − V ′) − M2

m
(V − V ′)2.

But V ′ 2 = (V − V ′)2 − 2V (V − V ′) + V 2 and hence

M

(

1 +
M

m

)

(V − V ′)
2 − 2M(V + v)(V − V ′) = 0,

with solutions V ′ = V and

V ′ = V − 2m

M +m
(V + v) → V as

m

M
→ 0.

The solution V ′ = V gives, from the momentum equation, v′ = −v, which is for the
motion of the particle through the block and we discard this solution. The equation for
v′ is

v′ =
2M

M +m
(V + v) − v =

2MV − (M −m)v

M +m
→ 2V + −v as

m

M
→ 0.

When m/M is zero the solutions correspond to the elastic collision of a massless particle
from a massive body when the relative velocity before and after the collision is the same.


