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An Efficient Smoother for the Stokes Problem

D. Braess∗ and R. Sarazin∗

Abstract. We present an efficient smoother for the solution of the Stokes problem by multigrid
methods. The smoother is obtained from a variant of the pressure correction steps in SIMPLE type
algorithms. On the other hand the complete SIMPLE iteration does not provide good smoothers.
The differences give rise to a distinction of two types of iterations although the types are seldom
encountered in their pure form. The differences are less significant in practical computations due
to additional approximations.

A smoothing and convergence rate O(m−1) is achieved where m denotes the number of
smoothing steps. Here the usual pressure correction step in SIMPLE iterations is understood as a
Jacobi type iteration. A Gauss-Seidel version has turned out to be more robust and preferable. This
is obvious from our numerical results for stationary and instationary problems.

1. Introduction

When multigrid algorithms for the Stokes problem (or the Navier Stokes equations) are
constructed, the design of the smoothing procedure is not an easy task.

The well-known procedures for the smoothing of scalar elliptic problems cannot be
applied here in the standard way since the matrices are not positive definite when they
arise from the discretization of saddle point problems. For this reason the early multigrid
procedures delt with the squared systems [7, 18, 14]. Although the convergence of that
multigrid method has been proven in [18], the method has not become popular due to its
low efficiency.

Therefore, now two other methods are used in most cases. The first method refers
to the distributed iterations [5, 20, 21, 19], and the second one refers to an approximate
decoupling of the system

Au + BT p = f,

Bu = 0,
(1.1)

see [11, 16]. The starting point is often an approximation of the block Cholesky decom-
position of (1.1). Moreover, the matrix A and its Schur complement S := B A−1 BT are
positive definite.

We will establish a smoothing procedure which is implicitly also related to a splitting
process. The solution of (1.1) characterizes the point on a subspace at which a quadratic

∗ Mathematisches Institut, Ruhr-Universität, 44780 Bochum, Germany
e-mail: braess@num.ruhr-uni-bochum.de; Regina.Sarazin@quantum.de



4

form attains its minimum. In the iteration process the quadratic form A will be replaced by
a simpler one. If we had applied our procedure formally to variational problems without
restrictions [these are here two Poisson equations], we had obtained the classical multigrid
procedure with smoothing by the Jacobi or Gauss-Seidel iteration. We have to solve an
equation of Poisson type in each smoothing step. This is no drawback since there are
efficient Poisson solvers, and Poisson solvers are already used in many iterative solvers
for the Stokes problem. Moreover, in this context the Poisson equations need only be
solved with low accuracy.

We also hope to shed some light into the methods which are related to the SIMPLE
method introduced by Patankar and Spalding [10, 9]. Those authors split the iteration into
two steps. In the first step only new values of the velocities are computed. In the second
step which is called "pressure correction step" the pressures are adapted and the velocities
are changed such that div u = 0 holds. There are different variants of the SIMPLE method,
and we will see that not all variants are suitable in multigrid algorithms.

Although we focuss only on the stationary Stokes problem, the algorithm is also
suited for the treatment of instationary problems and the Navier-Stokes equations.

2. Notations

Let � ⊂ Rd , d = 1, 2, or 3. We will write the Stokes problem in its weak form.

Find u ∈ X := H 1
0 (�)

d and p ∈ Y := L2,0(�) such that

a(u, v)+ b(v, p) = ⟨ f, v⟩ for all v ∈ X,

b(u, q) = 0 for all q ∈ Y.
(2.1)

Here, f ∈ X ′ is given, and

a(u, v) :=
∫
�

∇u∇vdx,

b(v, q) := −
∫
�

div vqdx .
(2.2)

The spaces H s(�) and H s
0 (�) denote the usual Sobolev spaces endowed with the Sobolev

norms ∥ . ∥s . Furthermore L2,0(�) := {q ∈ L2(�);
∫
�

qdx = 0} refers to the space of
L2-functions, when we do not distinguish between functions which only differ by a
constant.

We assume that � is polygonal and that Th is a triangulation of � with triangles
whose angles are bounded from below and whose diameters are bounded by h. Let uh and
ph be the finite element solutions of u and p for the finite element spaces of Taylor and
Hood, say uh ∈ Xh and ph ∈ Yh , cf. [6]. We will only refer to the usual approximation
property

∥u − uh∥1 + h−1∥u − uh∥0 + ∥p − ph∥0 ≤ ch · ∥ f ∥0, (2.3)
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and the inverse property

∥uh∥1 ≤ ch−1∥uh∥0 for uh ∈ Xh . (2.4)

Moreover, the stability of the saddle point problem will also be postulated.
When we consider multigrid methods, we will have sequences of nested triangula-

tions with h0 > h1 > . . . > hk , see Section 4.

Throughout the paper we use the symbol c to denote a generic positive constant that
is independent of the meshsize h and of the level ℓ. Note that c may take different values
at different places.

3. The Basic Iteration

In the analysis of multigrid methods the smoothing property is often established by purely
algebraic considerations, and the connection of the algebraic system to the elliptic problem
is not needed. This is the situation here, and we will study the basic iteration for the
smoothing in abstract form.

Let A be a symmetric and positive definite matrix. The linear system(
A BT

B

)(
u
p

)
=
(

f
g

)
(3.1)

characterizes the solution of the minimum problem

1
2

u′ Au − f ′u → min!

Bu = g.

Let α be a real number which is not smaller than the maximal eigenvalue of A, i.e.,

v′ Av ≤ αv′v (3.2)

holds. The solution of the similar system(
α I BT

B

)(
v

q

)
=
(

d
e

)
(3.3)

is more easily determined,(
α I BT

B

)−1

=
( 1
α
(I − BT S1 B) BT S1

S1 B −α S1

)
(3.4)

where S1 := (B BT )−1. In actual computations the vectors are obtained by implementing
the formulas (B BT )q = Bd − αe and v = 1

α
(d − BT q). Specifically, an equation of

the Poisson type has to be solved when the Stokes problem is treated. We note that the
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parameter α is encountered in two entries of the inverse matrix (3.4) and that only one of
them refers to α−1, cf. Remark 6.1 below.

In the multigrid analysis we will restrict ourselves to the auxiliary system (3.3) and
the iteration (3.6). We recommend replacing the multiple of the unit matrix α I in actual
computations by a preconditioner αC of A. Note that the solution of(

αC BT

B

)(
v

q

)
=
(

d
e

)
(3.5)

is obtained by the solution of (BC−1 BT )q = BC−1d − αe and v = 1
α

C−1(d − BT q).
The algebraic considerations of this section remain true. In particular C will often be a
diagonal matrix of the form C := diag(A).

Let (u j , pj )
′ be the current approximation in the iteration process. If the equation

for the correction is solved with the simplified matrix, we obtain the procedure(
u j+1
pj+1

)
=
(

u j
pj

)
−
(
α I BT

B

)−1
{(

A BT

B

)(
u j
pj

)
−
(

f
g

)}
. (3.6)

Note that u j+1 satisfies the restriction which is defined with the original variational prob-
lem, i.e., Bu j+1 = g holds.

In our analysis we assume that the iteration (3.6) is performed exactly. In actual
computations we will be content with approximate solutions. In this way we come closer
to other approaches. Obviously, one has(

C BT

B

)−1

=
(

I −C−1 BT

I

)(
C
B −S

)−1

where S := BC−1 BT . If C and S are approximated by incomplete LU decompositions
(or diagonal matrices), then the iterations of [21] are obtained. In [2] there is also an
analysis of the iteration with nonexact solutions for the Schur complement. They prove
convergence in suitable energy-norms.

A straightforward calculation shows that we have for the iteration (3.6)(
u − u j+1
p − pj+1

)
=
(
α I BT

B

)−1 (
α I − A 0

0 0

)(
u − u j
p − pj

)
. (3.7)

More interesting is the formula for the u-component which follows from (3.7) and (3.4).

u − u j+1 = (I − BT (B BT )−1 B) (I − 1
α

A) (u − u j ). (3.8)

The eigenvalues of the iteration matrix in (3.7) are obtained from the eigenvalue problem(
α I − A 0

0 0

)(
w

r

)
= λ

(
α I BT

B

)(
w

r

)
.
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Nonzero eigenvalues are only possible with w ̸= 0, Bw = 0. By multiplying the first
equation by w we obtain in this case

w′(α I − A)w = λαw′w.

With this it follows that (cf. (3.2))

0 ≤ λ < 1, 1 − λ = w′ Aw
αw′w

. (3.9)

Recalling, that A stands for a discretization of the Laplacian, we see that the eigenvalues
close to 1 are associated to smooth eigenfunctions.

We emphasize that the error of the new approximate solution is independent of the
p-component of the approximation from the previous step. This is obvious from (3.7).

The Euklidean norm of vectors will be denoted as ∥ . ∥ℓ2 .

Lemma 3.1. Let the vectors u j be computed by the iteration (3.6). If α ≥ λmax(A), then

∥u − u j+1∥ℓ2 ≤ ∥u − u j∥ℓ2 . (3.10)

Proof. Since A is symmetric and positive definite, the linear mapping I − 1
α

A is a con-
traction. Moreover,

P := I − BT (B BT )−1 B (3.11)

is an orthogonal projector, and (3.10) is a direct consequence of (3.8).

Now we are in a position to prove the main result on the smoothing property.

Lemma 3.2. Assume that α ≥ λmax(A) and that Bu0 = g. If um is computed by the
iteration (3.6), then there is a (pressure) vector q such that

∥A(u − um)+ BT q∥ℓ2 ≤ α

em
∥u − u0∥ℓ2 . (3.12)

If the assumption Bu0 = g is not satisfied, the statement holds if m is replaced by m − 1
in the denominator on the right hand side of (3.12).

Proof. The matrix M := P(I − 1
α

A)P is symmetric, and its spectrum is contained in the
intervall [0,1]. From the usual spectral decomposition argument we conclude that

∥(I − M)Mm∥ ≤ sup
0≤t≤1

{tm(1 − t)} ≤ 1
em
. (3.13)

Since the recursion formula (3.7) is linear, we may assume without loss of generality that
f = 0, g = 0, and u = 0. Since P is a projector and Bum = 0 for m ≥ 1, we have

(I − M)um = um − P(I − 1
α

A)um

= 1
α

P Aum = 1
α
(Aum − BT (B BT )−1 B Aum)

= 1
α
(Aum + BT q),

(3.14)
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if we put q := −(B BT )−1 B Aum .

If Bu0 = g, then um = Mmu0, and the desired estimate follows from (3.13) and
(3.14).

Otherwise, it follows from Lemma 3.1 that ∥u − u1∥ℓ2 ≤ ∥u − u0∥ℓ2 and um =
Mm−1u1. The estimate is obtained with m replaced by m − 1.

Remark 3.3. We note that the extra term q in (3.14) vanishes if the matrices A and B
commute. Since A and B are here discretizations of the differential operators −1 and
− div, respectively, we expect that BT q is small and that its largest terms are located near
the boundary of the domain. When the concept of transforming smoothers as in [20] is
used, then the iteration matrix also contains terms which vanish in the commutative case.

The observation that (u j+1, pj+1) is independent of pj and that the multiplication
by the projector P may be compensated by adding an appropriate pressure term (cf. [12])
are the crucial points of this paper.

4. The Multigrid Algorithm

As usually in the multigrid framework, we have a sequence of meshsizes h0 > h1 >

. . . > hk with hl−1 = 2hℓ for ℓ = 1, 2, . . . , k. The corresponding finite element spaces
(by Taylor and Hood) are nested

Xl−1 ⊂ Xℓ, Yl−1 ⊂ Yℓ for ℓ = 1, 2, . . . , k. (4.1)

Here, as usual we write Xℓ and Yℓ instead of Xhℓ and Yhℓ , respectively. Actually, one is
interested in the solution of (2.1) for the finest spaces Xk and Yk . The other spaces are
auxiliary ones, and one has to solve problems of the form

a(uℓ, v)+ b(v, pℓ) =< Fℓ, v > for v ∈ Xℓ,

b(uℓ, q) = 0 for q ∈ Yℓ.
(4.2)

Without changing the symbols for the velocity and the pressure variables we will write
(4.2) in matrix-vector form (

Aℓ BT
ℓ

Bℓ

)(
uℓ
pℓ

)
=
(

Fℓ
0

)
. (4.3)
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Multigrid Algorithm (one iteration loop at level ℓ, 1 ≤ ℓ ≤ k, with m pre-smoothing
steps.)
Let (u0

ℓ, p0
ℓ) ∈ Xℓ × Yℓ be a given approximation of the solution of problem (4.2).

1. Pre-Smoothing. For j = 0, 1, . . . ,m − 1 compute u j+1
ℓ , p j+1

ℓ as the solution of

αℓ · (u j+1
ℓ − u j

ℓ , v)ℓ2 + b(v, p j+1
ℓ − p j

ℓ )

= ⟨Fℓ, v⟩ − a(u j
ℓ , v)− b(v, p j

ℓ ) for v ∈ Xℓ,

b(u j+1
ℓ − u j

ℓ , q) = −b(u j
ℓ , q) for q ∈ Yℓ.

2. Intermediate pressure step. Compute the pressure pm+1
ℓ such that the ℓ2-norm of the

functional
∥a(um

ℓ , .)+ b(., pm+1
ℓ )− ⟨Fℓ, .⟩∥ℓ2

is minimal. Moreover set um+1
ℓ = um

ℓ .

3. Coarse grid correction. Set

Fℓ−1(v) := Fℓ(v)− a(um+1
ℓ , v)− b(v, pm+1

ℓ ) for v ∈ Xℓ−1 (4.4)

and let (ul−1, pl−1) be the solution of (4.2) for ℓ− 1 and the functional (4.4).

If ℓ = 1, then compute the exact solution and set (ũℓ−1, p̃ℓ−1) = (uℓ−1, pℓ−1).

If ℓ > 1, compute an approximation (ũℓ−1, p̃ℓ−1) of (uℓ−1, pℓ−1) by applying µ = 2
iteration steps of the multigrid algorithm on level ℓ− 1 with zero starting values.

Set
um+2
ℓ = um+1

ℓ + ũℓ−1, pm+2
ℓ = pm+1

ℓ + p̃ℓ−1.

4. Post-Smoothing. Compute um+3
ℓ , pm+3

ℓ as the solution of

αℓ · (um+3
ℓ − um+2

ℓ , v)ℓ2 + b(v, pm+3
ℓ − pm+2

ℓ )

= ⟨Fℓ, v⟩ − a(um+2
ℓ , v)− b(v, pm+2

ℓ ) for v ∈ Xℓ,

b(um+3
ℓ − um+2

ℓ , q) = −b(um+2
ℓ , q) for q ∈ Yℓ.

(um+3, pm+3) is the result of the loop.

We note that the intermediate pressure step is only given in order to have a complete
proof. This step can be abandoned in actual computations without a substantial loss of
efficiency, cf. Remark 3.3. The update of the pressure would require the solution of the
equation B BT qℓ = Brℓ with rℓ = Fℓ − Avm

ℓ − BT pm
ℓ . So the computing effort for this

step is almost the same as for one smoothing step.

The equations of Poisson type which arise in the smoothing steps need only to be
solved approximately. The numerical results show that large errors can be tolerated and
that the multigrid algorithm is very robust (cf. Section 7).
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5. Multigrid Analysis

We will prove convergence of the 2-level iteration for sufficiently many smoothing steps.
The extension to the multilevel procedure with a W-cycle is standard [1].At the moment we
are not able to prove convergence of the V-cycle since the iteration matrix is a contraction
for the ℓ2-norm, and this property has not yet been verified for the H 1-norm.

In order to avoid double indices, the consideration for the 2-level procedure will
refer to the h-grid as the fine grid and the 2h-grid as the coarse one.

As usual the analysis of the multigrid method will use discrete norms [1, 4, 18]. We
will follow [18] when choosing appropriate norms for the Stokes problem. In this way
we get the approximation property already from [18] although the smoothing property
has to be established by different considerations.

The scale of norms will be based on a weighted L2-norm in the product space
Xh × Yh :

∥(vh, qh)∥h := {∥vh∥2
0 + h2∥qh∥2

0}1/2. (5.1)

Since a(u, v)+b(v, p)+b(u, q) is a symmetric bilinear form on the finite element space
Xh × Yh , there is a complete set of eigenfunctions {(ϕi

h, ψ
i
h)} which satisfy

a(ϕi
h, v)+ b(v, ψ i

h)+ b(ϕi
h, q) = λi

[
(ϕi

h, v)0 + h2(ψ i
h, q)0

]
(5.2)

for all (v, q) ∈ Xh ×Yh . In view of (5.1) the eigenfunctions may be normalized according
to

(ϕi
h, ϕ

j
h )0 + h2(ψ i

h, ψ
j

h )0 = δi j . (5.3)

Given (vh, qh) ∈ Xh × Yh , there is a spectral decomposition (vh, qh) = ∑
i ci (ϕ

i
h, ψ

i
h).

With this decomposition a scale of discrete norms is defined:

|||(vh, qh)|||s :=
{∑

i

|λi |s |ci |2
}1/2

. (5.4)

Obviously,
|||(vh, qh)|||0 = ∥(vh, qh)∥h . (5.5)

For convenience, we may assume that uh = 0, ph = 0 is the solution of the given
equations. This assumption implies that u j

h and p j
h coincide with the error.

The computations are performed with the matrix vector representation of the equa-
tions (2.1). As mentioned in the previous section, we will use the symbols uh and ph

both for the functions in the finite element spaces and their vector representations. By a
standard scaling argument it follows that the Euklidean norms of the vectors are equiva-
lent to the L2-norms multiplied by h− d

2 , see e.g. [4]. In order to be consistent with (5.1),
without changing the notations we will choose a normalization such that

c−1∥uh∥ℓ2 ≤ ∥uh∥0 ≤ c∥uh∥ℓ2 ,

c−1∥ph∥ℓ2 ≤ h∥ph∥0 ≤ c∥ph∥ℓ2 .
(5.6)
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Of course, the reader will find a smoothing property and an approximation property
in our proof. On the other hand, this will not be sufficient for the treatment of the mixed
problem. The coarse grid correction will satisfy the restriction div u = 0 only with respect
to the 2h-grid. The next step will bring it back to the subset of vectors which satisfy the
restriction on the fine grid. A projection property will guarantee that this operation is
performed without a deterioration of the approximation.

The smoothing property and the approximation property refer to two norms in a
reciprocal manner. These norms are

∥uh∥ℓ2 and |||(uh, ph)|||2 .

We have chosen the ∥.∥ℓ2 -norm in order to avoid an additional constant in (5.8). The
equivalent L2-norm will be more convenient in the proof. As usually, the |||.|||2-norm
refers to the result of a multiplication with the operator, i.e., it follows from (5.4) and
(5.6) that

|||(uh, ph)|||2 ≤ c2
∥∥∥∥( A BT

B

)(
uh
ph

)∥∥∥∥
ℓ2

. (5.7)

Theorem 5.1. Let uh = 0, ph = 0. Assume that the number of pre-smoothing steps is
m ≥ 2. Then we have the projection property

∥u1
h∥ℓ2 ≤ ∥u0

h∥ℓ2 , ∥um+3
h ∥ℓ2 ≤ ∥um+2

h ∥ℓ2 , (5.8)

the smoothing property

|||(um+1
h , pm+1

h )|||2 ≤ ch−2

m − 1
∥u1

h∥ℓ2 , (5.9)

and the approximation property

∥um+2
h ∥ℓ2 ≤ ch2|||(um+1

h , pm+1
h )|||2 . (5.10)

Proof. The projection property (5.8) is a direct consequence of Lemma 3.1.

By construction the velocity u1
h satisfies Bhu1

h = 0. For this reason, we can apply
Lemma 3.2 to u1

h and obtain the estimate

∥Ahum+1
h + BT

h pm+1
h ∥ℓ2 ≤ λmax(Ah)

e(m − 1)
∥u1

h∥ℓ2 , (5.11)

since um+1
h = um

h and pm+1
h is chosen such that the left hand side of (5.11) is minimal.

From the inverse property (2.4) we have λmax(Ah) ≤ c · h−2. Moreover

Bum+1
h = 0.

Combining (5.7) and (5.11) we obtain (5.9).
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Finally, we obtain the approximation property directly from Verfürth’s results. The
Taylor-Hood element satisfies the general properties which are listed in [18]. Specifically,
by (4.2) in [18] the coarse-grid corrections u2h and p2h yield improvements such that

|||(um+1
h − u2h , pm+1

h − p2h)|||0 ≤ ch2|||(um+1
h , pm+1

h )|||2. (5.12)

Obviously, ∥um+1
h −u2h∥0 is bounded by the left hand side of (5.12), and the equivalence

of the ℓ2-norm and the L2-norm yields the estimate (5.10).

The convergence of the pressure vectors follows from the convergence of the veloc-
ities and (3.7).

We emphasize that the smoothing property yields an O(m−1)-behaviour while only
O(m−1/2) was obtained for the smoothers in [18, 14, 21]. — There is also a difference
between our smoothing procedure and the smoothing of the squared matrices which
refers to a computational aspect. The normalization of the p-component has been chosen
in (5.6) such that ∥p∥ℓ2 ≈ h∥p∥0. From the theoretical point of view the choice with a
normalization, say ∥p∥ℓ2 ≈ 5h∥p∥0, would be equally good since the quotient 5h

h is only
a constant. This change of the normalization has no influence on the computed values u j

h

and p j
h in our algorithm, but it has when an algorithm with the squared matrices is used.

6. Iterations of SIMPLE Type

When we started our investigations, we first tried to use the SIMPLE iteration of Patankar
and Spalding [10,9] as a smoother. The procedure, however, turned out to be not success-
ful. We will give some arguments for the failure and provide a motivation for the iteration
considered in Section 3. We hope to shed also some light into the variants of the SIMPLE
method which are often encountured in computational fluid mechanics.

Since the algorithms deal with the algebraic equations, we assume that the given
equations have the form (3.1). In all algorithms the loop for the computation of (u j+1, pj+1)

from (u j , pj ) consists of 2 steps.

SIMPLE Algorithm.
1. Consider the equation

Aũ = f − BT pj (6.1)

and compute an approximation u j+1/2 of ũ [e.g., by applying the Gauss-Seidel iter-
ation to equation (6.1)].

2. Let D be the diagonal part of A. With C = D solve the equation(
αC BT

B

)(
v

q

)
=
(

0
g − Bu j+1/2

)
approximately. To this end apply several steps of an iteration to the equation

(BC−1 BT )q = −α(g − Bu j+1/2). (6.2)
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Let q̃ be the approximate solution. Set

u j+1 = u j+1/2 − α−1C−1 BT q̃, pj+1 = pj + q̃.

The first step is based on the assumption that pj is a reasonable approximation such
that an improved velocity can be obtained from equation (3.1)1. The second step is called
pressure correction step and intends to decrease the residue of the equation Bu = g.

Remark 6.1. When the equation (3.1) is replaced by (3.3) in an iterative process, the
factor α is to be chosen such that the correction does not overshoot the solution. [The
same holds if we have αD instead of α I ]. To obtain an appropriate damping, a value
α ≈ λmax(A) is a reasonable choice, if g = 0, i.e., if the p-component of the right
hand side vanishes. This is obvious from the representation (3.4) for the inverse matrix.
Similarly, a value α ≈ λmin(A) is appropriate, if f = 0. For this reason one often finds
two different relaxation parameters in variants of SIMPLE iterations.

In 1984 the SIMPLEC algorithm was introduced by Van Dormaal and Raithby
[VDR]. The concept was the same as for the SIMPLE algorithm, but the approxima-
tive solution of auxiliary problems was performed by the more efficient ILU solvers.
Another improvement is motivated by Remark 6.1.

In essence, there are two differences between SIMPLE and SIMPLEC. In the algo-
rithm SIMPLEC the auxilliary diagonal matrix C is not simply derived from the diagonal
part of A, but from appropriately weighted row sums of A. Therefore the entries of C are
substantially smaller than the entries in the diagonal of A and underrelaxation is not any
longer necessary. Moreover the approximative solutions of (6.1) and (6.2) are computed
by ILU iterations, and the number of iterations varies between 1 and 20 in the literature.
Similarly there are big differences in the possible relaxation parameters. — We will not
be more specific since the differences have no impact on our considerations.

Remark 6.2. The SIMPLE algorithm (and the SIMPLEC algorithm, resp.) is only a poor
smoother. One can recognize this by a study of the one-dimensional case. The Stokes
problem on the interval � = (0, 2π) has the form

γ u − u′′ + p′ = f in (0, 2π),

−u′ = 0 in (0, 2π),

u = u R on {0, 2π},∫ 2π

0
pdx = 0.

(6.3)

Here we have γ = 0 in the stationary case and γ > 0 if (6.3) arises from the time
discretization of an instationary problem. Although the problem has the pathological
solution u = u R = constant, the application of the algorithm above to the continuous
problem gives an insight into the situation of the general case. Let A=̂γ Id −1, BT =̂ grad,
B=̂ − div.
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The SIMPLE algorithm contains a Poisson equation or Helmholtz equation with
Dirichlet boundary conditions for the temporary update of the velocity (cf. step 1 of the
algorithm)

(γ Id −1) u j+1/2 = f − ∇ pj in �,

u j+1/2 = u R on Γ := ∂�.
(6.4)

Another Poisson equation with "Neumann" boundary is encountered in the pressure cor-
rection:

−1qj+1 = −α div u j+1/2 in �,
∂qj+1

∂n
= 0 on Γ,∫

�

qj+1dx = 0.

(6.5)

We note that the diagonal part of the matrix A is a multiple of the unit matrix if equidistant
nodes are used. Since one needs an underrelaxed diagonal matrix for stability reasons,
we write αC = α I and obtain the iteration

u j+1 = u j+1/2 − 1
α

∇qj+1,

pj+1 = pj + qj+1.

(6.6)

For convenience we consider the iteration with the differential operators of the orig-
inal equations and not with their discretizations. In order to understand the spectral be-
havior of the error (u − u j , p − pj ), we start with a pressure p0 such that

∫
�

p0dx = 0
and that the error functions contain only one frequency

p0(x) = p(x)+ cos kx, k ∈ N. (6.7)

A straightforward integration of (6.4) and (6.5) leads to the intermediate velocity

u1/2(x) = u(x)+ k
γ + k2 sin kx,

the pressure correction
q1(x) = − α

γ + k2 cos kx,

and the final result of the iteration step

u1(x) = u(x) = u R,

p1(x) = p(x)+
(

1 − α

γ + k2

)
cos kx .

(6.8)

It follows from (6.8) that we have to choose α = γ +1 or smaller if an overshooting
of the correction is to be avoided. Therefore, the damping factor for cos kx in (6.8) cannot
be better than

1 − γ + 1
γ + k2 . (6.9)
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In particular, the damping factor is close to 1 for the oscillating terms.

In the case of γ > 0 the situation is better than for γ = 0. Since the parameter γ is
proportional to 1/1t , the influence of the frequencies is diminished if the timesteps 1t
are small. This is the reason why SIMPLE has been used as a smoother in time dependent
problems, if 1t is small (cf. [16]).

We emphasize that our smoothing procedure costs as much as the pressure correction
step of the SIMPLE algorithm. Although it is cheaper than a complete SIMPLE cycle, it
is better suited as a smoother.

The difference between the SIMPLE type algorithms and the basic iterations in
Section 3 is emphasized by the following definition.

6.3 Definition
(1) An iterative method is called u-dominant or direct if (u j+1, pj+1) mainly depends

on the value of u j .
(2) An iterative method is called p-dominant or a Schur complement iteration

if (u j+1, pj+1) mainly depends on the value of pj .

In each case the other variable is called a slave.

Obviously, the iteration (3.6) is u-dominant, on the other hand the algorithms of
SIMPLE type are p-dominant whenever good approximations of (6.1) are computed. Thus
the concept of both iterations is different. On the other hand the difference is reduced in
actual computations when only approximations of these iterations are performed. This is
illustrated e. g. in [15] — The well known Uzawa algorithm is also p-dominant. It may
be even interpreted as a Jacobi iteration for the equation for p with the Schur complement
B A−1 BT p = B A−1 f − g.

Let K denote the inverse matrix given in (3.4).

The positive results in section 5 and the negative result in Remark 6.1 indicate the
following conjecture. If an iteration of the form (3.6) is used such that the block matrix
K11 and not K22 enters, then only α−1 enters into the correction, and the iteration has
a smoothing effect. This is found in u-dominant iterations. If, on the other hand, K22

enters, a term proportional to α is encountered, and the iteration is not a good smoother.
The latter undesired behaviour is often connected with p-dominance.

7. Numerical Results

Numerical results are presented for finite element discretizations of 2D-Stokes problems
on a square

γ u −∆u + ∇ p = f in � := (0, 1)× (0, 1),

− div u = 0 in �,

u = u R on Γ,∫
�

p dx = 0

(7.1)
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with γ ≥ 0 (cf. (6.3)). We have used three different grids for the discretization of �, a
structured one (see Fig. 1.), an unstructured one (see Fig. 2.), and following [13] a grid
which is compressed in one direction, (see Fig. 3). The finest grids are obtained by 4
regular refinements, and one refinement yields the coarset grid.

Fig. 1. Structured grid Fig. 2. Unstructured grid Fig. 3. Distorted grid

The finite element calculations refer to the modified Taylor-Hood-element. Here ph

lives on grids of level ℓ with meshsize h = hℓ and uh on grids with meshsize h
2 . The

program is based upon a finite element library, FEAT, cf. [3].

We have investigated the following test problems.
Example 1: A stationary one with

u(x, y) = (sin x sin y, cos x cos y)′,

p(x, y) = 2 cos x sin y + C,

f (x, y) = (0, 4 cos x cos y)′,

u R(x, y) = u|Ɣ(x, y).

Example 2: A time dependent problem which has already been discretized in time with

u(x, y) = (sin 2πxt sin 2πyt, cos 2πxt cos 2πyt)′,

p(x, y) =
(

xy − 1
4

)
sin t,

f (x, y) = γ u −1u + ∇ p, γ = c
1t
, c > 0,

u R(x, y) = u|Ɣ(x, y).

Throughout this section all errors are measured by the ℓ2-norm of the residues.

The finite element discretization of (7.1) leads to a system of the form (3.1). The
auxiliary linear systems are solved approximately by a cg-solver with accuracies ϵu =
10−4 for the error of (6.1) and ϵq = 10−2 for the error of the pressure-correction equation.
All computations start with p0 ≡ 0 and u0

i = 0 for the inner nodes and u0
i = u R(xi )

for the nodes xi on the boundary. Therefore, the error of the initial guess contains both
smooth and oscillating parts.

For the sake of comparison we first have used the pure iterations to solve problem
(7.1) for example 1 on grids with meshsize h = 1/32 for p and 1/64 for u, resp.. To
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Table 1. Results of multigrid algorithm for stationary problem.
W-cycle, 2 pre-smoothing steps, 2 post-smoothing steps.

grid smoother C−1 α rate steps final error CPU

1 SIMPLE I const. 0.535 20 5.7 · 10−4 185
BASIC I const. 0.120 6 < 10−5 42

I adapt. 0.105 6 < 10−5 46
SSOR const. 0.025 4 < 10−5 50
SSOR adapt. 0.014 4 < 10−5 45

2 SIMPLE I const. 0.515 20 1.1 · 10−3 250
D−1 const. 0.545 20 9.8 · 10−4 248

BASIC I const. 0.477 20 7.8 · 10−4 209
I adapt. 0.353 14 < 10−5 175

D−1 const. 0.403 19 < 10−5 213
D−1 adapt. 0.250 10 < 10−5 133

SSOR const. 0.106 7 < 10−5 112
SSOR adapt. 0.082 6 < 10−5 107

3 BASIC D−1 adapt. 0.173 8 < 10−5 194
SSOR adapt. 0.033 5 < 10−5 165

achieve an error less then 10−5 we needed more than 500 iteration steps and 700 CPU-
seconds on a workstation with 40 MFLOPS.

To solve the discrete problem on the finest grid we have used a multigrid iteration on
four levels with the W -cycle. The computations stopped when the error bound 10−5 was
achieved, but at most 20 MG-steps were carried out. We have used the BASIC iteration
from Section 3 and the SIMPLE iteration from Section 6 as smoothers. For the matrix C
we have chosen the identity, or the diagonal part of A, or the preconditioning matrix for A
which is usually found in SSOR preconditioner of cg codes (Here it is implemented with
relaxation parameter ω = 1). Moreover we have chosen either constant scaling factors α,
or α was adapted in each step (n ≥ 1) such that ∥ f − Aun+1−BT pn+1∥ℓ2 was minimized.
The choices of α are related with the smallest eigenvalue of A in the SIMPLE-case and
with the largest one in the BASIC-case on each level. Table 1 shows the results for the
different smoothing iterations and for the stationary example with the three grids and 2
pre- and 2 post-smoothing steps. The convergence rates are the geometrical averages over
the first 10 MG-steps, and the CPU-times are given in seconds. The parameter α was
chosen nearly optimal and differs in each case where α was kept.

Obviously all variants of the multigrid iterations are much faster than the pure iter-
ations. There are also significant differences between the multigrid convergence rates for
SIMPLE- and BASIC-type smoothers. This was expected. In the case of the structured
grid BASIC-type variants are much better than SIMPLE-type ones. The convergence rates
are as good as expected in multigrid algorithms. In the case of the unstructured grid the
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situation is more involved. There are great differences between variants of BASIC. Only
the SSOR-method yields a high efficiency. Further tests show that the more regular a grid
is, the better are the results for C = I or C = D in the BASIC-case.

Table 2. Multigrid iteration for stationary problem on grid 1.
W-cycle, 2 pre-smoothing steps, 2 post-smoothing steps, α = constant.

step 1 2 3 4 5 10

smoother SIMPLE, C = I .
reduction 0.014 0.451 0.750 0.820 0.843 0.924
error 6.1 · 10−3 2.8 · 10−3 2.1 · 10−3 1.7 · 10−3 1.5 · 10−3 8.3 · 10−4

smoother BASIC, C = I .
reduction 0.119 0.117 0.119 0.122 0.126
error 3.3 · 10−1 3.9 · 10−2 4.6 · 10−3 5.6 · 10−4 7.1 · 10−5

smoother BASIC, C = SSOR.
reduction 0.008 0.041 0.047 0.053
error 9.0 · 10−2 3.7 · 10−3 1.8 · 10−4 9.4 · 10−6

Table 2 presents the history of a multigrid iteration for the structured grid with the
changes of the error reduction factors. In the SIMPLE-case there is a good error reduction
only in the first step, but afterwards the error reduction factors become almost as bad as
in the single grid SIMPLE iteration. On the other hand the smoothing by the BASIC
iteration leads to good and almost constant convergence factors.

The results for different numbers of pre-smoothing and post-smoothing steps are
listed in Table 3 for the stationary case and the worst grid. Here we have used the BASIC-
iteration with C−1 = SSOR(A) and the constant value α = 1.0 for smoothing in W-cycle
and V-cycle. As expected only 1 pre- and 1 post-smoothing step leads to unsatisfactory
convergence rates since the first step in the post-smoothing sequence acts more as a pro-
jection than as a smoother. If different numbers in the pre-smoothing and post-smoothing
are chosen, then it is more advantageous to choose a larger number in the post-smoothing.
This means that the first post-smoothing step only ensured the freedom of divergence. In
view of CPU-time there are not great differences between W- and V-cycle, 1 pre- and 2
post-smoothing steps are the best case.

In time dependent problems multigrid iteration with SIMPLE for the smoothing
yields good convergence rates, but only if the time steps 1t are small and the condition
number of the matrix A is not large. Table 4 shows the results for example 2 on the
structured grid. The time discretization is irrelevant for our considerations. Again we
took the W-cycle with four levels and 2 pre- and 2 post-smoothing steps.

We conclude that the multigrid algorithms with our smoothing procedure provide
good convergence rates both for stationary and for time dependent problems. The deteri-
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Table 3. Results of multigrid algorithm for stationary problem on grid 2.
Different combinations of pre-smoothing- and post-smoothing steps
with the BASIC iteration. C−1 = SSOR, α = 1.0 = constant.

steps W-cycle V-cycle
pre post rate steps CPU rate steps CPU

2 2 0.144 8 138 0.170 9 134
1 1 0.467 > 20 0.400 > 20
3 3 0.095 6 162 0.118 7 157
1 2 0.178 10 122 0.212 11 117
2 1 0.213 10 121 0.240 11 122
3 1 0.169 8 144 0.195 9 142
1 3 0.134 9 142 0.196 9 137
2 3 0.106 7 152 0.130 8 146
3 2 0.127 7 155 0.137 7 148

Table 4. Multigrid convergence rate for instationary problem and grid 1.
W-cycle, 2 pre-smoothing steps, 2 post-smoothing steps.
C = I, α = constant, c = 1.

1t smoother time step
1 2 3 4 5

0.0001 SIMPLE 0.062 0.062
0.001 0.232 0.229 0.620 0.633 0.633
0.005 0.382 0.359 0.786 0.816 0.854

0.001 BASIC 0.104 0.016 0.062 0.063 0.064
0.01 0.122 0.112 0.113 0.116 0.116

0.1 0.125 0.122 0.125 0.124 0.124

oration of the multigrid convergence rate which is observed for distorted or compressed
grids, can be compensated by an SSOR preconditioning in the smoothing iteration.
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Notes added after publication

1. The intermediate pressure step in the Multigrid Algorithm (Section 4) can be
abandoned. It has been proven in [22] that (3.12) holds for the actual pressure vector and
not only for an appropriate one. For details we refer to Section 5 in [22].

2. Another modification of the Multigrid Algorithm is suggested which increases
its numerical stability. The smoothing iteration is usually performed with the residue in
the momentum equation being large compared to the residue in the continuity equation.
Therefore a relaxation factor α ≈ λmax makes sense. Note that the different influence of
the parameter α on the u-component and the p-component is obvious from (3.4). Thus the
choice is not good if the actual velocity does not satisfy the discrete continuity equation.

For this reason we rather suppress the update of p in the first step of the smoothing
step and choose p1

ℓ = p0
ℓ if

Bu0
ℓ ̸= 0.

Similarly we have Bum+2
ℓ ̸= 0, i.e., the velocity is not in the kernel after the coarse-

grid correction. Therefore we better set pm+3
ℓ = pm+2

ℓ or we multiply the correction of
the p-variable by a relaxation factor such that the residue

∥ f − Aum+3
ℓ − BT pm+3

ℓ ∥ℓ2

is minimal. This is done in the same way as the computation of adaptive factors described
in section 7. With this modification the computation of adaptive factors in the other
smoothing steps becomes less important.

[22] D. Braess, W. Dahmen, and C. Wieners, A multigrid algorithm for the mortar finite
element method. SIAM J. Numer. Anal. (to appear)


