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Note on the Approximation of Powers of the Distance
in Two-Dimensional Domains

D. Braess

Abstract. Although Newman’s trick has been mainly applied to the approximation of
univariate functions, it is also appropriate for the approximation of multivariate func-
tions that are encountered in connection with Green’s functions for elliptic differential
equations. The asymptotics of the real-valued function on a ball in 2-space coincides
with that for an approximation problem in the complex plane. The note contains an open
problem.

In the numerical treatment of elliptic equations there arises the problem in [4] of poly-
nomial approximation of

f (x, y) := [(x − x0)
2+ (y− y0)

2]−s(1)

since the fundamental solutions often contain terms of this form. Heres> 0. Although
this is a multivariate approximation problem with two real variables, it can be reduced
to an approximation problem in the complex plane by a simple construction which goes
back to Donald Newman [3] and is called Newman’s trick. In this way we also obtain a
sharp lower bound of the error of the best approximation, and the exponential decrease
of the error is easily established.

We are interested in the approximation off on a ball in 2-space that does not contain
the point(x0, y0). After a translation and scaling, if necessary, we may assume that the
ball is the unit ball. Moreover, we may apply a rotation such that(x0, y0) is mapped to
the point(r,0) on the real line. By assumption,r > 1.

As usual, we define

En( f ) := inf{‖ f − Pn‖; Pn is a polynomial of total degreen},

where‖·‖ refers to the sup-norm on the unit ball. Our aim is an estimate of the asymptotic
behavior.
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Theorem. Assume that r2 := x2
0 + y2

0 > 1. Then we have for the polynomial approxi-
mation on the unit disk

lim
n→∞ En( f )1/n ≤ 1

r
.(2)

If, moreover, r ≥ 3 or 0< s< 1, then

lim
n→∞ En( f )1/n = 1

r
.(3)

It is an open problem whether the lower bound also holds ifr gets close to 1 and if
s is large. On the other hand, the estimate (3) can be extended to the function log[(x −
x0)

2+ (y− y0)
2] by considering it as the real part of an analytic function.

1. Adaptation of Newman’s Construction

First we turn to the complex-valued function

g(z) := (r − z)−s.

Obviously,

|g(z)| ≤ ks(r − 1)−s for |z| ≤ r − r − 1

k
.(1)

Let pk be the Taylor polynomial of degreek for g. Cauchy’s integral formula yields the
representation of the remainder

g(z)− pk(z) = zk+1 1

2π i

∮
|z|=r−ε

1

t − z

1

tk+1
g(t)dt.(2)

Following Bernstein’s well-known arguments for the approximation of analytic func-
tions, see, e.g., [2, Chap. 7, §8] we obtain

|g(z)− pk(z)| ≤ c1ksr−k for |z| ≤ 1,(3)

wherec1 ≤ e(r −1)−s−1. The factoreenters here through the formula(1−1/k)−k ≤ e.
The polynomialspk are not real valued, but the product

P2n(x, y) := pn(z)pn(z)

is a real polynomial of degree 2n in the real variablesx andy. This is easily verified by
looking at the product of linear factors

(z− a)(z̄− ā) = x2+ y2+ |a|2− 2<(āz)(4)

= x2+ y2+ |a|2− 2x<a− 2y=a.

Next we note that

g(z)g(z) = |z− r |−2s.
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Now, Newman’s trick [3] applies to the product; see also [1, p. 139]:

gḡ− pn p̄n = 2<[ḡ(g− pn)] − |g− pn|2.(5)

Hence,

|gḡ− pn p̄n| ≤ 2(r − 1)−sc1nsr−n + c2
1n2sr−2n(6)

≤ c2n2sr−n for |z| ≤ 1.

Here,c2 := 2c1(r − 1)−s + c2
1. The bound is conservative since the second term in (9)

is dominated by the first one ifn is large. After inserting the real-valued functions we
obtain

|[(x − r )2+ y2]−s − P2n(x, y)| ≤ c2n2sr−n for x2+ y2 ≤ 1.(7)

2. An Improvement

In a second step we will construct a polynomial of total degreen which approximatesf
of the same order asP2n. Let pk be as above and define

q0 := p0,

qk := pk − pk−1, k ≥ 1.

For improving the approximation we set

Qn(x, y) :=
n∑

k,`=0
(k+`≤n)

qk(z)q`(z).(1)

Since the symmetrical productqk(z)q`(z) + q`(z)qk(z) is real valued, so is the sum in
(11). Obviously, we have

P2n(x, y)− Qn(x, y) =
n∑

k,`=0
(k+`>n)

qk(z)q`(z) =
n∑

k=1

qk(z) [ pn(z)− pn−k(z)].

From (6) it follows that

|p` − pk| ≤ |g− pk| + |g− p`| ≤ 2c1`
sr−k if k < `.

Moreover, when estimating the derivativeg(k)(0) via Cauchy’s integral theorem, we
recall (4) and see that|qk(z)| ≤ c1ksr−k|z|k. Hence,

|P2n(x, y)− Qn(x, y)| ≤
n∑

k=1

c1nsr−k 2c1nsr−n+k(2)

= 2c2
1n2s+1r−n.

Setc3 := 2c2
1 + c2. Combining (10) and (12) we obtain

En( f ) ≤ c3n2s+1r−n.(3)

This proves the upper bound for the asymptotics as stated in (2).
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3. The Lower Bound

The advantage of the construction via an approximation in the complex plane becomes
apparent when we establish the lower bound. The latter refers to the fact that the approx-
imation on the unit ball cannot be better than the approximation on the unit circle.

It follows from (7) thatpn(z)pn(z) is merely a polynomial of degreen if its restriction
to the unit circle is considered; see [3]. LetP̃n := P2n||z|=1. Now the approximation
problem on the unit circle is equivalent to an approximation problem with trigonometric
polynomials. The winding number argument in [1, pp. 139 and 147] or [5] shows that
pn p̄n provides a good test function for applying de la Vall´ee-Poussin’s theorem.

To be specific, we have

arg{ḡ(g− pn)} = arg{g−1(g− pn)}.

Sinceg − pn has a zero of multiplicityn + 1, the winding number ofg−1(g − pn) is
n+ 1, and the argument of̄g(g− pn) is increased by 2π(n+ 1) when the unit circle is
transversed. Therefore<{ḡ(g− pn)} = ḡ(g− pn) holds at least at 2n+ 2 points with
alternating signs, and from de la Vall´ee-Poussin’s theorem and (8) we conclude that for
any polynomialPn of degreen:

‖ f − Pn‖ ≥ 2 min
|z|=1
{|g(g− pn)|} −O(n2sr−2n).(1)

The crucial point is that we will get good lower estimates of the first term on the right-hand
side in the case

r ≥ 3 or 0< s< 1.(2)

If r ≥ 3, a near circularity property in the sense of [5] is easily established. Assume
thatn is so large that(n+ 1)s < 6

5ns. Then we have|qk+1(z)| ≤ 2
5|qk(z)| if k > n and

|z| = 1. A summation of the geometric series yields
∑

k≥n+2 |qk(z)| ≤ 2
3|qn+1(z)|; i.e.,

the next term of the power series dominates the remainder,

|g(z)− pn(z)| ≥ 1
3|qn+1(z)| for |z| = 1.(3)

For determiningqn+1 we use here the explicit representation ofg(n+1):

g(n+1)(0)

(n+ 1)!
= s(s+ 1) · · · (s+ n)

(n+ 1)!
r−s−n−1 ≥ s

n+ 1
r−s−n−1.

Combining the last two estimates with an obvious lower bound of|g| we obtain

|g(z) [g(z)− pn(z)]| ≥ 1
3(r + 1)−s s

n+ 1
r−s−n−1 for |z| = 1.

Now, we apply (14), and in this way de la Vall´ee-Poussin’s theorem asserts that

En( f ) ≥ c4n−1r−n−1−O(n2sr−2n) for n sufficiently large(4)

with c4 > 0. The lower bound in (3) has now been verified for the caser ≥ 3.
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Obviously, the same technique can be used more generally forr > 2 if the constants
6
5 and 1

3 are replaced by appropriater -dependent factors.
Another case in which we can establish a good de la Vall´ee-Poussin bound refers to

0< s < 1. Here the Cauchy integral (5) can be deformed into an integral along the cut
(r,∞) on the real line

g(z)− pn(z) = zn+1 1

π

∫ ∞
r

1

t − z

1

tn+1
(=g(t))dt.

The weight factort−n−1=g(t) in the integral is positive, and we obtain for|z| = 1:

|g(z)− pn(z)| ≥ 1

π

∫ ∞
r
< 1

t − z

1

tn+1
(=g(t))dt

≥ r

r + 1

1

π

∫ ∞
r

1

tn+2
(=g(t))dt

= r

r + 1

1

n+ 1!
g(n+1)(0).

Fromr/(r + 1) ≥ 1
3 it follows that (16) holds here also, and we obtain again the lower

bound in (17). This completes the proof of the theorem.
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