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Summary. A variant of multigrid schemes for the Stokes problem is dis-
cussed. In particular, we propose and analyse a cascadic version for the
Stokes problem. The analysis of the transfer between the grids requires spe-
cial care in order to establish that the complexity is the same as that for
classical multigrid algorithms.
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1. Introduction

Multilevel methodswithoutcoarse grid corrections have been defined and
applied to elliptic problems of second order by Bornemann and Deuflhard
[1,5]. They have called it a cascadic algorithm and showed that an optimal
iteration method with respect to the energy norm is obtained if conforming
elements are used.

Deuflhard’s starting point for the cascadic multigrid method [5] was the
idea that it should be sufficient to start the iteration at the leveli with a good
approximation from the leveli − 1. A similar idea can already be found in
Chapter 9 of Wachspress’ book [12] from 1966, i.e. from the period in which
also the first theoretical investigations of multigrid methods were made.
The approach from that period had, however, the drawback that not enough
steps were performed on the coarse grids. Later Shaidurov [8] established
in essence a recursion relation of the form

‖ui − vi‖1 ≤ ‖ui−1 − vi−1‖1 + c
hi

mi
(1.1)
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for some finite element problems with full regularity. Hereui denotes the
exact solution on the leveli andvi its approximation computed aftermi

steps. The accumulation of the error is no problem since the iteration steps
on the lower levels are cheap.

It is crucial for the optimality of the algorithm that the error from the pre-
vious level enters with a factor of precisely1. Since it was not clear whether
a constant factorgreater than1 is encountered in the transfer for noncon-
forming elements, there are no serious conjectures for the latter families.
This feature is shared by the Stokes equations as will be obvious in Sect. 4.
In fact, the nonconformity caused by the prolongation operator introduces
factors strictly greater than 1 in the recursion (1.1).

There is another difference to classical multigrid algorithms. The recur-
sion relation (1.1) refers only to the energy norm, and it has been proved in
[2] that the cascadic version is in generalnotoptimal for theL2-norm. This
is in contrast to classical multigrid algorithms, see [7,13], where one can
more easily move between theH1-norm and theL2-norm.

We will develop the cascadic multigrid method for saddle point problems
which arise from the Stokes problem. Here we will apply the smoothing pro-
cedure proposed in [4]. However, prolongating an approximate solution to
the next higher level generally destroys the divergence freeness ensured by
the smoother. Since the natural correction arising in this context involves a
projector that is orthogonal inL2 and not with respect to the energy inner
product, there is the drawback with theL2-norm mentioned above. Never-
theless, we are able to properly isolate the influence of nonconformity and to
apply then a duality technique providing sufficiently sharp estimates for the
additional terms. This eventually will be shown to yield optimality for our
saddle point problems. Since this in turn is related to a careful analysis of
the transfer between the grids, the technique is also useful in the treatment
of nonconforming elements.1 The analysis shows that the loss induced by
the transfer between the grids can be controled also in nonstandard cases.
This may be of interest for many multigrid algorithms and not only for those
of cascadic type.

We note that the cascadic multigrid algorithm offers an efficient alterna-
tive to nested iteration for obtaining a good initial guess of the finite element
solution. It is not our intention to replace the standard multigrid procedure.

2. Notation and problem formulation

Let Ω ⊂ R
d, d = 2 or 3, and letHs(Ω), Hs

0(Ω) denote the usual Sobolev
spaces endowed with the Sobolev norms‖ · ‖s. The spaceL2,0(Ω) :=

1 Note added in proof.Indeed, R. Stevenson [9] told the authors in Jan. 1998 that he has
applied the analogous technique to deal with nonconforming elements
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{q ∈ L2(Ω) :
∫
Ω

qdx = 0} can be identified withL2(Ω)/R. The weak

formulation of the Stokes problem reads: Findu ∈ X := H1
0 (Ω)d and

p ∈ M := L2,0(Ω) such that

a(u, v) + b(v, p) = 〈f, v〉 for all v ∈ X,

b(u, q) = 0 for all q ∈ M.
(2.1)

Here,f ∈ X ′, the dual ofX, is given, with〈·, ·〉 being the standard duality
pairing induced by theL2 inner product, and

a(u, v) :=
∫
Ω

∇u∇vdx,

(2.2)
b(v, q) := −

∫
Ω

div vqdx.

We assume that the problem isH2-regular, e.g.Ω may be a bounded
convex polyhedral domain in 2-space.

We are interested in approximate solutions to (2.1) obtained by finite
element discretizations. To this end we assume that for eachi ∈ N0, i ≤ J ,
Ti denotes a shape-regular triangulation ofΩ which is generated by suc-
cessively refining uniformly some initial triangulationT0. Shape regularity
means that the ratio of the diameter and the radius of the largest inscribed
ball of any simplex inTi remains bounded. Accordingly,Xi andMi will
denote the corresponding conforming finite element spaces of Taylor and
Hood [3,6]. Likewise we may use any elements with the properties listed in
[11]. In particular, the finite element spaces are nested and form an ascending
hierarchy of spaces

X0 ⊂ X1 ⊂ · · · ⊂ XJ ⊂ X, M0 ⊂ M1 ⊂ · · · ⊂ MJ ⊂ M.

Restricting (2.1) to the pairXi, Mi, gives rise to the linear system of equa-
tions (

Ai BT
i

Bi

) (
ui

qi

)
=

(
fi

0

)
,(2.3)

where as usual the operatorsAi, Bi onXi are forui ∈ Xi defined by

(Aiui, v) = a(ui, v), v ∈ Xi, (Biui, q) = b(ui, q), q ∈ Mi.

Of course, as soon as one fixes bases inXi andMi, one obtains matrix repre-
sentations ofAi, Bi which will be denoted again byAi, Bi, respectively. For
simplicity we identify the functionsvi, qi in Xi, Mi with their coefficient
sequences, always assuming that the bases are normalized so that

‖vi‖0 ∼ ‖vi‖`2 .(2.4)

Numerische Mathematik Electronic Edition
page 181 of Numer. Math. (1999) 82: 179–191



182 D. Braess, W. Dahmen

That is, both norms can be uniformly bounded by constant multiples of each
other. Moreover we have the inverse inequalities

‖vi‖1 ≤ ch−1
i ‖vi‖0, vi ∈ Xi.(2.5)

Here and throughout the paperc will be a generic constant which is inde-
pendent of the level and which may be different in different equations.

Our objective is to solve (2.3) for the highest level of resolutioni = J .

3. The smoothing operation

A key ingredient of a multigrid scheme for the solution of (2.3) is a suitable
smoother. In the following we will employ the smoother proposed in [4].
Since this can be described for an abstract saddle point problem, for conve-
nience we suppress the subscripts indicating the discretization level. Thus
we consider the linear system of equations

(
A BT

B

) (
u

q

)
=

(
f

g

)
,(3.1)

whereA is a symmetric positive definite matrix. It characterizes the solution
of the constrained minimum problem

1
2
uTAu − fTu → min! subject toBu = g.

Now suppose thatC is a preconditioner forA which, in particular, satisfies

vTAv ≤ vTCv, v ∈ X,(3.2)

and for which the linear system
(

C BT

B

) (
v

q

)
=

(
d

e

)
,(3.3)

is more easily solved. Note that the inverse is formally given by

(
C BT

B

)−1

=
(

C−1(I − BTS−1BC−1) C−1BTS−1

S−1BC−1 −S−1

)
,(3.4)

where
S := BC−1BT

is the Schur complement of (3.3). Specifically, ifC = αI, then (3.2) reads

vTAv ≤ α vTv,
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A cascadic multigrid algorithm for the Stokes equations 183

i.e., α is assumed to be not smaller than the spectral radiusρ(A) of A. In
this case (3.4) becomes

(
αI BT

B

)−1

=
( 1

αP BT(BBT)−1

(BBT)−1B −α(BBT)−1

)
,(3.5)

whereP is the projection

P := I − BT(BBT)−1B.(3.6)

Now, (3.1) is to be solved by an iteration of the form
(

u`+1

p`+1

)
:=

(
u`

p`

)
−

(
αI BT

B

)−1 {(
A BT

B

) (
u`

p`

)
−

(
f

g

)}
,(3.7)

where superscripts will always denote iteration indices. It is important to
note thatu`+1 always satisfies the constraint, i.e.,

Bu`+1 = g,(3.8)

see [4]. Each iteration step requires solving a system of the form (3.3) with
C = αI. By (3.5), this can be realized by implementing

BBTq = Bd − αe, v =
1
α

(d − BTq).

Specifically, this amounts to solving an equation similar to the Poisson equa-
tion in the case of the Stokes problem. In view of the available efficient
Poisson solvers this is acceptable, e.g., smoothers which incorporate Pois-
son solvers have been used in some efficient multigrid algorithms by Turek
[10]. Moreover numerical results in [4] support the expectation that approx-
imate solutions of the equations are sufficient. Obviously it would be against
the spirit of the idea of cascadic solvers to use multigrid here, but fortunately
there are efficient AMG algorithms which solve the Poisson equation in a
black box manner.

In particular, defining forg = 0

V := {v ∈ X : Bv = 0}
the iteration remains inV . Therefore one can constructconjugate directions
from the corrections in (3.7). In fact, defining the vector

g` := Au` + BTp` − f

as the residual of the first block and computingh` from
(

αI BT

B

) (
h`

p`

)
=

(
g`

0

)
,

Numerische Mathematik Electronic Edition
page 183 of Numer. Math. (1999) 82: 179–191



184 D. Braess, W. Dahmen

we obtain the next conjugate direction and the next iterate from

d` := −h` + β`d
`−1

u`+1 := u` + α`d
`.

The factorsα` andβ` are determined as in any cg-algorithm. Note that by
constructionBh` = 0 so that also

Bd` = 0, ` = 0, 1, . . . .(3.9)

Thus one considers the cg-method confined to a subspace whereA is definite.
The cg-method based on (3.7) will be employed as a smoother in the cascadic
multigrid algorithm in accordance with the concept for scalar equations in
[1,8].

4. The cascadic multigrid iteration

Our objective is to analyse the following

CASCADIC Multigrid Algorithm:
Compute the exact solutionu0, q0 of (2.3) on leveli = 0. Setv0 := u0.
For i = 1, . . . , J : {
– Computewi as the prolongation ofvi−1.
– Computev0 := v0

i as the projection ofwi to Vi := kerBi.
– Executem = mi steps of the cg-method.
– Setvi := vm

}
Since the spacesXi, Mi are nested, the prolongation

vi−1 7→ wi, qi−1 7→ q0

in the above scheme is simply the inclusion. However, although eachv`
i−1

and hencevi−1 belong toVi−1, its prolongationwi will generallynotbelong
to Vi. The correction can be performed by solving the sytem

(
C BT

B

) (
w̃

q̃

)
=

(
0

−Bwi

)
,(4.1)

where we again suppress the level indexi in the matricesB, C. In fact, by
the remarks at the beginning of Sect. 3,w̃ minimizes the quadratic functional
(Cv, v) under the constraintBw̃ = −Bwi. One easily confirms that

w̃ = −C−1BT(BC−1BT)−1Bwi.(4.2)
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A cascadic multigrid algorithm for the Stokes equations 185

Hence,

v0 := wi + w̃ = (I − C−1BT(BC−1BT)−1B)wi =: PCwi.(4.3)

Thus, since for(u, v)C := (u, Cv) = (Cv, u)

(PCz − z, w)C = −(C−1BT(BC−1BT)−1Bz, Cw)
= ((BC−1BT)−1Bz, Bw) = 0, for all w ∈ Vi,

the mappingPC is just the orthogonal projection toVi with respect to the
inner product(·, ·)C .

The most convenient choice forC is αI. Noting thatPαI = PI =: P
(see (3.6)) for anyα > 0 this gives rise to the orthogonal projector with
respect to the standardL2-inner product, i.e.,

‖P‖0 = 1.(4.4)

For completeness, we note that there is also a bound with respect to the
‖ · ‖1-norm.

Lemma 1. For P = Pi defined by (3.6) one has‖Pi‖1 ≤ c uniformly in
i ∈ N.

Proof. It suffices to prove thatS = Si := BT(BBT)−1B is uniformly
bounded in‖ · ‖1. To this end, note thatV = kerB is a closed subspace
of H1

0 (Ω)d. Therefore its orthogonal complementV ⊥ with respect to(·, ·)1
exists. Thus anyv ∈ Xi can be written asv = z + w with Bz = 0 and
w ∈ V ⊥. Obviously,BSv = Bv = Bw. Hence,

‖Sv‖2
1 = ‖S(z + w)‖2

1 = ‖Sw‖2
1.(4.5)

On the other hand, since

‖w‖2
1 ∼ (Bw, Bw) for w ∈ V ⊥,(4.6)

cf. Remark III.5.5 in [3], we obtain

‖Sw‖2
1 ∼ (BSw, BSw) = (Bw, Bw) ∼ ‖w‖2

1 ≤ ‖w‖2
1 + ‖z‖2

1 = ‖v‖2
1,

and the assertion follows from (4.5).ut
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5. The cg-method and optimal polynomials

According to (3.8) in [4] the error in thev-component for the iteration (3.7)
is given by

u − v`+1 = P (I − 1
α`

A)(u − v`) = (I − 1
α`

PAP )(u − v`),(5.1)

whereP is defined by (3.6). From the theory of the cg-method we know that

‖u − vm‖1 ≤ c |||u − vm|||
= c inf

{|||u − Qm(PAP )v0||| : deg Qm ≤ m, Qm(0) = 1
}

.(5.2)

Here the energy norm||| · ||| is defined by||| v||| := (v, PAPv)1/2
0 , so that

in the case of the Stokes problem

||| v||| := |Pv|1.(5.3)

It has been shown by Shaidurov [8] that, givenm ∈ N andΛ > 0, there
exists a polynomialQm such that

Qm(0) = 1

|√xQm(x)| ≤
√

Λ
2m+1 for x ∈ [0, Λ],

|Qm(x)| ≤ 1 for x ∈ [0, Λ].

(5.4)

We setλmax := λmax(PAP ). SincePAP is selfadjoint, following Shaidu-
rov [8] we obtain from (5.4) an operatorQm with

|||Qmv||| ≤
√

λmax

2m + 1
‖v‖0, v ∈ Xi,

|||Qmv||| ≤ ||| v||| , v ∈ Xi.

We emphasize that the energy norm is a mesh-dependent norm, since the
projector in (5.3) depends on the grid. Therefore we reformulate the above
bounds. SinceQmv belongs toVi, we have|||Qmv||| = |Qmv|1, i.e.

|Qmv|1 ≤
√

λmax

2m + 1
‖v‖0, v ∈ Xi,(5.5)

|Qmv|1 ≤ |Pv|1, v ∈ Xi.(5.6)

Although during the computationsQm is only applied to functions in the
kernelVi, it is crucial for the analysis that the estimates hold for allv ∈ Xi.
Moreover we note that the inverse inequality (2.5) implies

λmax = λmax(PAP ) ≤ λmax(A) ≤ ch−2.(5.7)
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6. A recursion relation and final estimates

In contrast to cascadic iterations for scalar elliptic problems the prolongation
of the approximate solutionvi−1 on leveli − 1 is followed by a correction
which projects the prolongatedwi to v0 := Piwi ∈ Vi. SincePi is an
orthogonal projector relative to theL2-inner product and therefore generally
does not have norm one inH1, the relation

‖v0 − ui‖1 = ‖Pi(wi − ui)‖1

does not allows us to directly infer the estimate

‖v0 − ui‖1 ≤ ‖wi − ui‖1

which would be needed in a convergence analysis following the concepts
of [1,8]. The subsequent discussion indicates the corresponding difficulties.
We will overcome them by switching to the| · |1-projector in the analysis.
The terms which arise from the compensation will be estimated by applying
the following lemma.

Lemma 2. There exists a linear mappingRi : Xi → Vi and a constantc
such that

‖(I − Ri)zi‖0 ≤ chi‖zi‖1 for all zi ∈ Vi−1,(6.1)

|Rizi|1 ≤ |zi|1 for all zi ∈ Xi.(6.2)

The proof of the lemma will be given in the next section.
First, under the regularity assumption

‖u‖2 + ‖p‖1 ≤ c‖f‖0,

one obtains theL2-estimate

‖u − ui‖0 ≤ ch2
i ‖f‖0.

Thus the triangle inequality yields

‖ui − ui−1‖0 ≤ ‖ui − u‖0 + ‖u − ui−1‖0 ≤ ch2
i ‖f‖0.(6.3)

Here we assume as usual thathi/hi−1 remains bounded.
We are now prepared to analyze the error produced by the scheme de-

scribed in Sect. 4. To this end, we recall thatui denotes the exact solution of
the discrete problem inXi, whilev0 = v0

i := Piwi denotes the starting value
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for the iteration on the leveli. As beforewi is the prolongation of the approx-
imate solutionvi−1 = vmi−1 in Xi−1. AbbreviatingQi := Qmi(PiAiPi),
we obtain

ui − vi = Qi(ui − Pivi−1)
= Qi(ui − Piui−1) + QiPi(ui−1 − vi−1)
= Qi(ui − Piui−1) + QiRi(ui−1 − vi−1)

+ Qi(Pi − Ri)(ui−1 − vi−1).(6.4)

As for the first summand, we invoke (5.5), (5.7), and (6.3) to obtain

|Qi(ui − Piui−1)|1 ≤ c
h−1

i

mi
‖ui − Piui−1‖0

≤ c
h−1

i

mi
‖ui − ui−1‖0(6.5)

≤ c
hi

mi
‖f‖0.

The second term of (6.4) is estimated by employing (5.6), the estimate (6.2)
in Lemma 2, andPiRi = Ri:

|QiRi(ui−1 − vi−1)|1 ≤ |PiRi(ui−1 − vi−1)|1 = |Ri(ui−1 − vi−1)|1
≤ |ui−1 − vi−1|1.(6.6)

The third summand on the right hand side of (6.4) represents the essential
distinction from the scalar elliptic case. It reflects the nonconformity of the
prolongation. Applying first (5.5), using as before thatPi−Ri = Pi(I−Ri)
and bearing (4.4) in mind, provides

|Qi(Pi − Ri)(ui−1 − vi−1)|1 ≤ c
h−1

i

mi
‖(Pi − Ri)(ui−1 − vi−1)‖0

≤ c
h−1

i

mi
‖(I − Ri)(ui−1 − vi−1)‖0.

At this point the main estimate (6.1) from Lemma 2 comes into play which
yields

‖(I − Ri)(ui−1 − vi−1)‖0 ≤ chi|ui−1 − vi−1|1.
This in turn implies by the previous estimate that

|Qi(Pi − Ri)(ui−1 − vi−1)|1 ≤ c

mi
|ui−1 − vi−1|1.(6.7)

By combining all three estimates (6.5), (6.6) and (6.7) for the terms on
the right hand side of (6.4), we obtain immediately the recursion relation in
the following proposition.
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Proposition 3. There exists a constantc such that

|ui − vi|1 ≤ c
hi

mi
‖f‖0 + (1 +

c

mi
) |ui−1 − vi−1|1.(6.8)

The choice ofmi for the number of smoothing steps on leveli was
made in [1] such that the term fori = J dominates in the sums

∑
i m

−1
i hi

and
∑

i mih
−d
i . (Specifically the choice in [1] corresponds to settingα :=

(d + 1)/2 in the next theorem.) Therefore the error of the solutionuJ and
the computing effort are given by the contributions of the finest grids.

With the aid of Proposition 3 we are now in a position to establish similar
properties here and show that the cascadic multigrid algorithm for the Stokes
problem behaves like the cascadic algorithms investigated by Bornemann
and Deuflhard [1] and by Shaidurov [8].

Theorem 4. Assume that1 < α < d and that the CASCADIC multigrid
algorithm described in Sect. 4 is applied withmi cg steps on the levels
1 ≤ i ≤ J themi being the smallest integers satisfying

mi ≥ mJ 2α(J−i).(6.9)

Then the algorithm yields an approximate solutionvJ on the highest level
with

‖uJ − vJ‖1 ≤ c
hJ

mJ
‖f0‖0,(6.10)

where the constantc is independent off andJ . Moreover, the complexity
of the algorithm is bounded bycmJ dimXJ .

Proof. Sincev0 = u0, by Proposition 3 we obtain

‖uJ − vJ‖1 ≤ c

J∑
j=0

j−1∏
i=0

(
1 +

c

mJ−i

)
hJ−j

mJ−j
‖f‖0.

From (6.9) we infer that

J−1∑
i=0

1
mJ−i

≤ 1
mJ

J−1∑
i=0

2−αi ≤ 2
mJ

.

Thus the products
∏J−1

i=0

(
1 + c

mJ−i

)
are uniformly bounded by

exp(2c/mJ) and

‖uJ − vJ‖1 ≤ c
J∑

j=0

hj

mj
‖f‖0.(6.11)

The estimate (6.10) now follows from (6.11) combined with Lemma 1.3
in [1], while for the above choice of themi the complexity estimate is a
consequence of Lemma 1.4 in [1].ut
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7. Proof of Lemma 2

Givenzi ∈ Xi, let wi ∈ Xi be the solution of

a(wi, v) + b(v, pi) = a(zi, v) for all v ∈ Xi,
b(wi, q) = 0 for all q ∈ Mi.

(7.1)

Obviously we obtain a linear projectionRi : Xi → Vi if we setRizi := wi.
Since the finite element spacesXi, Mi are stable, we have

‖wi‖1 + ‖pi‖0 ≤ c‖zi‖1.(7.2)

In order to apply Nitsche’s trick, we consider the auxiliary variational prob-
lem

a(y, v) + b(v, r) = (wi − zi, v)0 for all v ∈ H1
0 (Ω)d,

b(y, q) = 0 for all q ∈ L2,0(Ω).(7.3)

Since we have assumedH2-regularity, we obtain

‖y‖2 + ‖r‖1 ≤ c‖wi − zi‖0.(7.4)

Now we insertv := wi − zi andq := pi into (7.3):

(wi − zi, wi − zi)0 = a(y, wi − zi) + b(wi − zi, r) + b(y, pi).(7.5)

Note that the left hand side equals‖wi−zi‖2
0. Next we recall that (7.1) holds

for v ∈ Xi−1 andq ∈ Mi−1. Since we are only interested in estimates for
zi ∈ Vi−1, it follows thatb(zi, q) = 0 for q ∈ Mi−1. Hence,

a(wi − zi, v) + b(v, pi) = 0 for all v ∈ Xi−1,
b(wi − zi, q) = 0 for all q ∈ Mi−1.

(7.6)

The general approximation results for affine families of finite elements [3]
guarantee that there is ayi−1 ∈ Xi−1 such that‖y − yi−1‖1 ≤ ch‖y‖2 and
ri−1 ∈ Mi−1 such that‖r − ri−1‖0 ≤ ch‖r‖1. Combining this with (7.5)
and (7.6), we obtain

‖wi − zi‖2
0

= a(y − yi−1, wi − zi) + b(wi − zi, r − ri−1) + b(y − yi−1, pi)
≤ c‖wi − zi‖1 (‖y − yi−1‖1 + ‖r − ri−1‖0) + c‖y − yi−1‖1‖pi‖0

≤ ch‖wi − zi‖1 (‖y‖2 + ‖r‖1) + ch‖y‖2‖pi‖0.

The triangle inequality and (7.2) yields‖wi − zi‖1 ≤ c‖zi‖1. Finally, we
use (7.2) for estimating‖pi‖0 and (7.4) for estimating‖y‖2 and‖r‖1:

‖wi − zi‖2
0 ≤ ch‖zi‖1 ‖wi − zi‖0.(7.7)

We divide (7.7) by‖wi − zi‖0, setRizi := wi, and the proof of (6.1) is
complete.

In order to prove (6.2) we setv := wi, q := pi in (7.1) and obtain

|wi|21 = a(wi, wi) = a(zi, wi) + 0 ≤ |zi|1 |wi|1.
After dividing by |wi|1 we have (6.2). ut
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