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Abstract

A cascadic multigrid (CMG) method for elliptic problems with strong material jumps is proposed and
analyzed. Non–matching grids at interfaces between subdomains are allowed and treated by mortar
elements. The arising saddle point problems are solved by a subspace confined conjugate gradient
method as smoother for the CMG. Details of algorithmic realization including adaptivity are elabo-
rated. Numerical results illustrate the efficiency of the new subspace CMG algorithm.

AMS Subject Classification: 65N55.

Keywords: cascadic multigrid method, domain decomposition, mortar elements, non-matching grids,
material jumps.

1. Introduction

In this paper, we consider linear elliptic problems

�divðaðxÞruÞ þ cu ¼ f

on general domains in Rd ; d ¼ 2 or d ¼ 3, where the focus is on the case when the
coefficient aðxÞ is strongly discontinuous. Standard multiplicative multigrid
methods [12], [25] or additive multilevel methods like KASKADE/BPX [15], [13]
are known to converge, but to slow down whenever the material jumps are ‘‘too
strong’’. In this case, cascadic multigrid (CMG) methods [14], [6], [7], [8], the
youngest members of the multigrid family, are known to deteriorate in their
performance – see, e.g., the numerical experiments in [16].

In order to overcome such an undesirable effect, domain decomposition seems to
be a remedy. In order to allow for non-matching grids and large jumps at in-
terfaces, mortar elements are considered. In this setting, adaptive mesh refinement
can be realized on either side of the jump interfaces without penetrating into the
‘‘wrong’’ subdomains. Recently, a CMG algorithm for mortar elements has been
suggested in [16]. In this method, however, the CMG appeared only in inner loops
for each homogeneous subdomain, realized via a conjugate residual iteration. For
strong jumps, however, this approach led to an algorithm not competitive with
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the standard KASKADE/BPX algorithm. The purpose of the present paper is to
derive a competitive CMG algorithm.

In principle, mortar elements can be implemented and analyzed either as non-
conforming elements [4], [5] or as a mixed finite element method [2], [3], [10]. In
both cases the Lagrange multipliers enter into the calculation of a posteriori error
estimators either directly or in some concealed way. The algorithm to be suggested
here provides these multipliers for an easy computation of a posteriori error
estimators and thus for controlling the adaptive mesh refinement; cf. also [27] or
[29]. The iteration is organized such that the mortaring conditions are automat-
ically satisfied during the cg-iteration, i.e., the iterates stay in the subspace wherein
the problem is positive definite.

Although we could follow certain ideas of [11] for the Stokes problem, there were
theoretical and practical problems, the answers to which are not straightforward.
Specifically, the update of the state variables can be performed in the manner well-
known for cg-algorithms, whereas the Lagrange multipliers have to be treated in a
different way. In fact, an iterative update of the Lagrange multipliers due to
Stevenson [24] is realized. As will be documented by numerical results in Sect. 6,
the CMG algorithm with a subspace confined conjugate gradient iteration
suggested here, is faster than KASKADE/BPX even in the presence of strong
material jumps.

The paper is organized as follows. In Sect. 2, we describe the mortar element
setting in the framework of mixed methods [2], [3], [10] with piecewise constant
Lagrange multipliers. In Sect. 3, we present a conjugate gradient method with
iterates remaining in the subspace of those functions that satisfy the weak
matching conditions at the interfaces. The extra treatment of the Lagrange
multipliers is elucidated. The smoothing property of the method follows from
results in [7], [9], [21]. In Sect. 4, we formulate our new subspace CMG method
and prove its convergence for the case of quasi-uniform grids. An adaptive ver-
sion of the method based on an edge-oriented error estimator in the spirit of [15] is
discussed in Sect. 5. Finally, comparative numerical results for a notorious ma-
terial jump problem are given in Sect. 6.

2. Mortar Element Setting

Let X � Rd , d ¼ 2; 3, be a polygonal Lipschitz domain. We consider the elliptic
Dirichlet problem: find u 2 H 1

0 ðXÞ such that

Z
X

½aðxÞrurvþ cðxÞuv
dX ¼
Z
X

fv dX 8v 2 H 1
0 ðXÞ: ð2:1Þ

Here f 2 L2ðXÞ, aðxÞ is a positive bounded function, and cðxÞ is a nonnegative
bounded function. We specify a non-overlapping partitioning of X into subdo-
mains Xk:
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�XX ¼
[K
k¼1

�XXk:

Each subdomain Xk is covered by a triangular (d ¼ 2) or tetrahedral (d ¼ 3)
regular mesh Tk. Let Ckl denote the interface between the subdomains Xk and Xl,
and assume that Ckl is simply connected. It is admitted that the grids Tk and Tl

do not match at the interface Ckl. Following a commonly used notation, the grid
on Ckl is formed by the grid points of Tk on the interface, i.e., Xk is the non-
mortar side. The opposite side is the mortar side (or master side). As a standard,
the mortar side is chosen to be the one with the larger (average) diffusion coef-
ficient aðxÞ in (2.1). The Lagrange multipliers are associated to the non-mortar side
Xk, and live therefore on the side with the smaller (average) diffusion coefficient.

We denote any finite element spaces on Xk and Ckl by Vk and Kkl, respectively.
(They will be fixed later). Moreover, let

Vh :¼
YK
k¼1

Vk; Kh :¼
Y
k<l
Ckl 6¼;

Kkl; and Xh :¼ Vh � Kh:

In this framework, we consider the finite element problem with Lagrange multi-
pliers at the interfaces Ckl, k < l: find ðuh; khÞ 2 Xh such that

aðuh; vhÞ þ bðkh; vhÞ ¼ f ðvhÞ;
bðlh; uhÞ ¼ 0

�
8ðvh; lhÞ 2 Xh; ð2:2Þ

where

aðu; vÞ :¼
XK
k¼1

Z
Xk

aðxÞrurvþ cðxÞuvð ÞdX;

bðk; vÞ :¼
X
k<l

Z
Ckl

kklðvk � vlÞds;

f ðvÞ :¼
XK
k¼1

Z
Xk

fv dX:

As usual, vk :¼ vjXk
and the subscript is depicted in cases of ambiguity.

There are several ways of choosing finite element spaces Vk and Kkl that satisfy the
inf-sup condition [2], [3], [4], [5], [10]. In this paper, Vk will be the space of
piecewise linear finite elements in H1ðXkÞ associated with the grid Tk – without
any continuity assumptions at the cross points in 2D (and edges in 3D). In
contrast to the earlier paper [16], but in the spirit of suggestions due to [27], we
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here select the space Kkl as piecewise constant functions in L2ðCklÞ, and (as usual)
we refer to [2] for a proof of the inf-sup condition that applies to these elements;
cf. also [28, p. 30].

In Fig. 2.1 we elucidate the basis functions of Kkl for the case of a 1D interface
Ckl. Let the nodes of the mesh Xk be located at points with Cartesian coordinates
xm, m ¼ 0; 1; . . . ; nkl þ 1 and 0 ¼ x0 < x1 < . . . < xnklþ1. Basis functions /ðklÞ

m of Kkl

are associated only to the nodes in the interior of Ckl:

/ðklÞ
m ðxÞ :¼ 1; ym � x � ymþ1; m ¼ 1; 2; . . . ; nkl,

0; otherwise

�

where ym :¼ ðxm�1 þ xmÞ=2 for m ¼ 2; 3; . . . ; nkl and y1 :¼ x0, ynklþ1 :¼ xnklþ1.

In the 3D case the support of a basis function /ðklÞ
1 2 Kkl associated with a vertex

of a triangle on a 2D interface is slightly more technical (to be expressed in terms
of barycentric coordinates) and is therefore omitted here.

Once the finite element spaces have been fixed, problem (2.2) results in a system of
linear algebraic equations in saddle point form:

Az :¼ A BT

B 0

� �
u
k

� �
¼ f

0

� �
¼: F : ð2:3Þ

As usual, the matrix is computed with the (standard) nodal basis functions, and
the vector norm is equivalent to the L2 norm of the finite element function. The
submatrix A is a positive definite block diagonal matrix

A ¼
A1

. .
.

AK

2
64

3
75:

Let nk be the size of the matrix Ak, nu :¼
PK

k¼1 nk the size if u, nk the size of k, and
N :¼ nu þ nk the total problem size of z. We conclude from the inf-sup condition
that problem (2.3) has a unique solution. In particular, B is a matrix with full
rank.

Fig. 2.1. Nodal basis functions of Kkl next to a cross point for a staggered grid
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3. Subspace Confined Conjugate Gradient Iteration

The system of linear equations (2.3) characterizes the solution of the constrained
minimization problem

min
v

ðAv; vÞ � 2ðf ; vÞf g subject to Bv ¼ 0: ð3:1Þ

As is well–known, this problem is equivalent to an spd–problem on the subspace

U :¼ fv : Bv ¼ 0g: ð3:2Þ

Therefore these equations can, in principle, be solved by any preconditioned
conjugate gradient (PCG) method realized within the subspace U . In order to
confine all iterates to this subspace, we follow [11] and introduce a preconditioner
that replaces the matrix A by

H :¼ D BT

B 0

� �
:

Here D should be some positive definite matrix having a simple structure and
satisfying the inequality

ðDv; vÞ � ðAv; vÞ 8v 2 Rnu : ð3:3Þ

In the spirit of [11], the 2� 2 block system (2.3) is solved iteratively. We introduce
the corresponding splitting zi ¼ ðui; kiÞ for the block variables at iteration step
i ði ¼ 0; 1; . . .Þ and ri ¼ F �Azi ¼: ðriu; rikÞ for the block residuals. With this no-
tation, we are now ready to write our suggested PCG method as follows:

(1) Initial guess: Fix ~zz :¼ ð~uu; ~kkÞ, where ~uu need not belong to the subset U .

(2) Subspace entering:

r0 ¼ �ð0;B~uuÞ;
z00 ¼: ðu00; k00Þ ¼ ~zzþH�1 r0;

z0 ¼: ðu0; k0Þ ¼ ðu00; ~kkÞ:
ð3:4Þ

Moreover, set p0 ¼ 0 and c0 ¼ 0.

(3) Subspace iteration: i ¼ 1; 2; . . .

ui ¼ ui�1 þ ai�1pi�1;

ki ¼ ki�1 þ si�1
k ;

ri ¼ F �Azi with zi ¼ ðui; kiÞ;
si ¼ ðsiu; sikÞ ¼ H�1ri;

pi ¼ siu þ ci�1p
i�1;

ð3:5Þ
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where

ai ¼
ri

ðApi; piÞ ; ci�1 ¼
ri

ri�1
; ri ¼ ðsi; riÞ: ð3:6Þ

The above iteration actually confines the iterates ui to the subspace U as desired.
In fact, a short calculation verifies that u0 2 U as well as siu 2 U ; i � 0; cf. [11]. The
relations pi 2 U and ui 2 U then follow by induction. The formula (3.5) is derived
from the well-known procedures for preconditioned conjugate gradients, and siu
takes the role of the preconditioned gradient. The iteration can be understood as a
conjugate gradient method for the u-variable with a preconditioner that is built by
the matrix D and a projection.

Note that in the above subspace iteration only the u-components are computed by
the rules of cg-iteration, whereas the k-components are evaluated by the under-
lying Jacobi iteration. This is motivated by STEVENSON’s observation that the
Jacobi iteration yields the correction of the Lagrange multiplier that minimizes
the residue with respect to the norm j � jD�1 :¼ ð�;D�1�Þ1=2. The computation uses
only terms that are anyway available.

Remark 3.1: (Stevenson [24]): Let ui; ki be approximate solutions of the saddle
point problem (3) and let ri; si be defined by (3.5). Then the minimization problem
(with u ¼ ui fixed)

Aui þ BT k � f
�� ��

D�1! min
k

is solved by k ¼ ki þ sik.

This statement is verified by a simple calculation. Indeed, we obtain si ¼ H�1ri in
(3.5) by solving the equation

BD�1BT sik ¼ BD�1riu: ð3:7Þ

The solution of this equation characterizes the minimum of jBT k � riujD�1 , i.e.
jBT sik � riujD�1 � jBT k � riujD�1 for all k. Since riu ¼ f � Aui � BT ki, the proof is
complete. (

In the subspace entering part (3.4) and in the subspace iteration (3.5) there are
terms with H�1. We need to solve interface equations of the type

BD�1BT k ¼ g ð3:8Þ

for their implementation. The numerical solution of this equation can be done as
follows: (a) On the coarsest grid, it is solved directly. (b) On finer grids in 2D,
static condensation towards the cross points may be applied (cf. [27]), i.e., the
values at the cross points are eliminated last in a Gaussian elimination process. (c)
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In 3D, iterative solvers are used. – In our algorithm, we have implemented iter-
ative solvers both for 2D and 3D problems. The (inner) iteration was terminated
as soon as the condition

Bui
�� �� � 10�2 Bu0

�� �� ð3:9Þ

has been passed. This part consumed only 4–8% of the total computing time and
is therefore comparatively cheap. The accuracy supplied by the iteration turned
out to be sufficient within the multigrid setting to be discussed in Sect. 4. For
more investigations of approximate solutions of (3.8) the reader is referred to
Zulehner’s theory [30] and for the controlled termination of the iteration to [26].

Remark 3.2: The influence of the Lagrange multipliers on the computation is
greater than one may imagine from the theoretical considerations. In principle, ui

and ki are independent of ki�1 if (3.7) is solved exactly, and one might drop the
specifications of k0 and ki in the definition of the PCG algorithm. Since (3.7) is
solved only approximately, however, we are interested in small right hand sides of
the equations, i.e. small residues ri. Good values of ki are desired for this com-
putational reason, and when calculating ki due to Remark 3.1 we are close to the
optimal multiplier with respect to a minimal residue.

The Lagrange multipliers must not be updated in the subspace entering process
because of the danger of overshooting. That danger exists in calculations with the
matrix H when we operate with u vectors that are not contained in the subspace
U . This follows from the influence of the relaxation parameters on H�1; cf. (3.5)
in [7].

Once the iteration is computationally defined, we want to analyze its iterative
convergence behavior. For this purpose, we introduce the matrix

R :¼ I � D�1BT BD�1BT
� ��1

B: ð3:10Þ

In particular, we have u0 ¼ R~uu in the subspace entering procedure. The following
properties imply that R is the D-orthogonal projection onto U . It is symmetric with
respect to the scalar product ð�; �ÞD since

ðRD�1ÞT ¼ RD�1 and ðDRÞT ¼ DR: ð3:11Þ

Recalling (3.3) and using straightforward calculations we obtain

jRjD � 1; jI � D�1AjD � 1; and jI � D�1AjA � 1: ð3:12Þ

in terms of the induced norm j � j2D :¼ ð�;D�Þ.

Since ui; u 2 U , the iterative errors ui � u, i � 1, are known to be independent of
the error of the Lagrange multiplier ki; cf. [11]. They are given by the formulas:
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u0 � u ¼ R ~uu� uð Þ; ð3:13Þ
ui � u ¼ ui�1 � u

� �
þ ai�1pi�1; ð3:14Þ

pi ¼ RðI � D�1AÞðui�1 � uÞ � ðui�1 � uÞ þ ci�1p
i�1

¼ �RD�1Aðui�1 � uÞ þ ci�1p
i�1; i ¼ 1; 2; . . .

where the factors ai and ci are given by (3.6). After m iterative steps we thus arrive
at

um � u ¼ Sm RD�1A
� �

u0 � u
� �

; ð3:15Þ

where Sm½�
 is a polynomial of degree m. Because of (3.11), we have a pcg-algo-
rithm with the symmetric, positive definite matrix RD�1 as a preconditioner. From
(3.3) we even conclude that the spectrum of A1=2RD�1A1=2 is contained in the
interval ½0; 1
. Due to the well-known optimality of the cg iterations in the A-
norm,

um � uj jA¼ min
qm2Pm

qm½RD�1A
ðu0 � uÞ
�� ��

A

where Pm denotes the subset of those polynomials qm with degree less or equal to
m which satisfy qmð0Þ ¼ 1. In the context of cascadic algorithms, the following
polynomial operator is used for upper estimates of the error [21], [7].

Lemma 3.3: There exists a linear operator Lm ¼ qm½RD�1A
 with qm 2 Pm such
that for all v 2 U we have

Lmvj jA�
1

2mþ 1
jvjD and Lmvj jA� jvjA: ð3:16Þ

The m-asymptotics in (3.16) has been shown in [21], [7] to open the door for the
construction of a cascadic algorithm of optimal complexity already in 2D. A
smoother like Gauss–Seidel relaxation or Gauss–Jacobi relaxation would at best
lead to some nearly optimal code in 2D – compare [7, Lemma 1.1]. In 3D, how-
ever, any smoother mentioned above is optimal in terms of the energy norm with
differences only in the leading coefficient.

Up to now, we have not yet specified the matrix D. The simplest (local) choice
certainly is just akIk, a multiple of the identity matrix, as suggested in [9] for the
Stokes problem. Since we admit large changes of the diffusion coefficient, how-
ever, a more suitable choice appeared to be the (still simple) diagonal matrix

D :¼ 2 diagðAÞ: ð3:17Þ

Remark: We also experimented with matrices which are used as preconditioners
for one-level cg iterations. Small-rank perturbations of diagonal matrices have
been proposed by KUZNETSOV [19], [20] in that context. Let Åk denote the special
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stiffness matrix for the elliptic equation (2.1) with the coefficient ck ¼ 0 and Mk be
the corresponding matrix for the pure Helmholtz case. Then, the vector wk

spanning Åk and being normalized according to wT
k Mkwk ¼ 1 yields the

projections Pk :¼ wkwT
k with PkMk ¼ ðMkPkÞT . In our notation, the preconditioner

suggested in [19, 20] associated to the subdomain Xk reads

D�1
k ¼ Ik � PkMkð ÞD�1

Ak
Ik �MkPkð Þ þ 1

ck
Pk: ð3:18Þ

In our numerical experiments including example (6.1) below, however, the di-
agonal preconditioner (3.17) has clearly outperformed the variant (3.18). The
reason is that the iteration is here required to serve as a smoother within a
multilevel algorithm rather than as a preconditioner. Moreover, the specification
(3.18) would cause trouble in the (Helmholtz-free) case with ck ¼ 0. In order to
be able to run a comparison between the two preconditioners (3.17) and (3.18),
we have chosen the test example (6.1) in Sect. 6 with a ‘‘small’’ Helmholtz
term.

4. Multigrid Convergence Analysis

As for the finite element solution of problem (2.2), there are quite a number of a
priori error estimates for the case of mortar elements with piecewise linear Lag-
range multipliers [3], [4], [5], [10], [27]. For piecewise constant multipliers as con-
sidered in the present paper, the theory can be easily extended using arguments
from the CROUZEIX–RAVIART element. We recall the basic result here; cf. [2], [27],
[28].

Lemma 4.1: Assume that the solution of problem (2.1) is in H 1
0 ðXÞ \

QK
k¼1

H 2ðXkÞ.
Let �hh :¼ maxk hk. Then

XK
k¼1

�hh�1 u� uhk kL2ðXkÞþ u� uhk kH 1ðXkÞ

� �
� C

XK
k¼1

hkkukH2ðXkÞ: ð4:1Þ

We will employ Lemma 4.1 later to analyze our subspace cascadic multigrid
algorithm for mortar elements and its convergence properties for nested quasi-
uniform grids.

The definition of the multilevel procedure requires some notation. For
k ¼ 1; . . . ;K, we identify Tk with the coarse triangulation of Xk. For refinement
levels j ¼ 0; 1; . . . ; J , a nested family of finite element spaces X0 � X1 � . . . � XJ is
defined with

Xj :¼ Vj � Kj and Vj :¼
YK
k¼1

Vkj:
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As a natural generalization of (3.2), the subspace Uj of Vj will contain those finite
element functions on the level j that satisfy the mortar conditions.

In pseudocode formulation our subspace cascadic multigrid (for short SCMG)
algorithm reads (compare [9])

j ¼ 0 : u�0; k�0
direct solution of the saddle point problem
on the coarse grid;

ð4:2Þ

j ¼ 1; . . . ; J : u�j ¼ Ij;mjRju�j�1

iterative solution of saddle point problems

on successively finer grids:

ð4:3Þ

The first step on each refinement level j ¼ 1; . . . ; J is to prolongate the (approx-
imate) solution u�j�1; k

�
j�1 from the previous coarser level for use as the starting

point of the iteration on the level j. It is done simply by interpolation. The
operator Rj performs the projection to the subspace Uj, as specified by the sub-
space entering process ~uu 7!u0 in (3.4). Similarly, the operator Ij;mj represents mj

subspace iterations (3.5) on the level j.

The choice of the prolongation of the Lagrange multipliers has very little impact
on the vectors in the iteration. We need only reasonable approximations in order
to make the inner iteration efficient as discussed in Remark 3.2. Therefore it is
sufficient to take the mean value of the multipliers from adjacent nodes whenever
a node in the fine grid is not a node on the previous level.

For the analysis of this iteration, let hkj be the discretization parameter associated
with Vkj and hk :¼ hkJ . As usual uj 2 Vj denotes the finite element solution of the
saddle point problem (2.2) and Nj the dimension of the vectors on the level j just
as defined at the end of Sect. 2.

Let k � ka denote the energy norm induced by the bilinear form að�; �Þ, and let j � jA
be the induced norm of its vector representation, i.e.,

kvka ¼ jvjA; for v 2 Vh:

Moreover, since the meshes are shape regular, we have

vkk kL2 Xkð Þ� hk vkj jDk
: ð4:4Þ

Let �hhj denote the maximal mesh size of the triangles on the level j. The general
quasi-uniformity assumption is

1

C
�hhj � hkj � �hhj; 1 � k � K;
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with a constant C > 0. For nested meshes, this assumption is often replaced by the
relation hkj � 2J�jhk. Recall from Lemma 3.3 that

Lmjvj
�� ��

a
� C

mj
h�1
j vj
�� ��

L2ðXÞ and Lmjvj
�� ��

a
� vj
�� ��

a 8vj 2 Uj:

An L2 estimate of the following kind is typical for the analysis of cascadic
multigrid algorithms with nonconforming or mixed elements (cf. [9]).

Lemma 4.2: Assume that the given problem (2.1) is H2 regular. There is a linear
mapping Fj : Vj ! Uj such that kFjvjka � kvjka for all vj 2 Vj and

I � Fj
� �

vj
�� ��

L2ðXÞ� C�hhj vj
�� ��

a for all vj 2 Uj�1:

The idea of the proof of this lemma is to apply the FORTIN interpolation operator
for the mapping Fj as in Lemma 2 of [9]. The desired L2 estimate can then be
obtained by a standard duality argument; cf. [9, chapter 7]. For this reason, the
quite similar proof for mortar elements is omitted here.

Admittedly, our above assumption of H2-regulararity is rather strong – in par-
ticular, as we aim at discontinuous coefficients. The theoretical problems con-
nected with strong jumps are a well-known subtle issue in all kinds of multigrid
convergence analysis and would also deserve more attention in the present con-
text. For the time being, however, the interested reader may recur to the thorough
papers by M. Dryja (e.g., [17]) to get an idea of how much extra analytical work
would be involved to tackle this question. Moreover the extension to the less
regular case has been exemplified for cascadic algorithms in [22], [23]. – The
numerical experiments to be reported in Sect. 6 include strong material jumps.

With these preparations, we are now ready to state the main convergence estimate
for the SCMG method.

Theorem 4.3: Let �hhj ¼ 2J�j�hhJ , j ¼ 0; 1; . . . ; J , and 2 < b < 2d for d ¼ 2; 3. If the
numbers of iteration steps are chosen according to

mj :¼ mJb
J�j� �

; ð4:5Þ

then the final error of the subspace cascadic multigrid method is bounded by

u�J � uJ
�� ��

a� C
�hhJ

1� 2=b
kf kL2ðXÞ ð4:6Þ

with C ¼ CðmJ Þ, and the computational complexity is bounded by

XJ
j¼1

mjNj � C
mJNJ

1� b=2d
: ð4:7Þ

A Subspace Cascadic Multigrid Method for Mortar Elements 215



Proof: The proof follows closely the proof of Proposition 3 in [9], and we have
only to generalize it to the more general preconditioner here. For j ¼ 1; 2; . . . ; J
we have

u�j � uj ¼ Ij;mjRju�j�1 � uj ¼ Sj;mj RjJj u�j�1 � uj
� �� �

:

Here Jj :¼ I � D�1
j Aj, and Rj denotes the Dj-orthogonal projection operator onto

the subspace Uj as introduced in (3.10). The error propagation operator Sj;mj for
the PCG method is found in (3.15). Let Lj;mj be the linear operator appearing in
Lemma 3.3. By applying Lemma 3.3, Lemma 4.1, and estimate (3.12) for the
operator Jj, we have

u�j � uj
��� ���

a
� Lj;mj Rj u�j�1 � uj

� �� ���� ���
a

� Lj;mj Rj uj�1 � uj
� �� ��� ��

a
þ Lj;mj Fj u�j�1 � uj�1

� �� ���� ���
a

þ Lj;mj Fj � Rj
� �

u�j�1 � uj�1

� ���� ���
a

� C
mj

Rj uj�1 � uj
� ��� ��

Dj
þ u�j�1 � uj�1

� ���� ���
a

þ C
mj

Rj � Fj
� �

u�j�1 � uj�1

� ���� ���
Dj

:

ð4:8Þ

The difference uj � uj�1 can be expressed in terms of the discretization error at the
levels j and j� 1. Since we have restricted ourselves to the case of full regularity,
we obtain from (3.12), (4.4), and Lemma 4.1

Rj uj�1 � uj
� ��� ��

Dj
� juj�1 � ujjDj

� C�hh�1
j uj�1 � uj
�� ��

L2ðXÞ� C�hhj
XK
k¼1

ujk
�� ��

H2ðXkÞ

� C�hhjkf kL2ðXÞ:

Moreover, by exploiting (3.12) for Rj and Jj, applying an inverse inequality, and
using the second inequality in Lemma 4.2 we conclude that

Rj � Fj
� �

u�j�1 � uj�1

� ���� ���
Dj

¼ jRjðI � FjÞðu�j�1 � uj�1ÞjDj

� I � Fj
� �

u�j�1 � uj�1

� ���� ���
Dj

� C�hh�1
j I � Fj
� �

u�j�1 � uj�1

� ���� ���
L2ðXÞ

� C u�j�1 � uj�1

� ���� ���
a

� C u�j�1 � uj�1

��� ���
a
:
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Inserting this into (4.8) we obtain

u�j � uj
��� ���

a
� C

�hhj
mj

kf kL2ðXÞ þ 1þ C
mj

� �
u�j�1 � uj�1

��� ���
a
: ð4:9Þ

Before summing up terms by virtue of this recursion relation, we note that the
iteration numbers mj decrease so fast that (4.5) implies

PJ
j¼1ð1=mjÞ � 2=mJ .

Hence,
QJ

j¼1ð1þ C=mjÞ � expð2C=mJ Þ. Having these tools we finally estimate

u�J � uJ
�� ��

a � C
XJ
j¼1

�hhj
mj

kf kL2ðXÞ
YJ

‘¼jþ1

1þ C
m‘

� �

� C exp 2C=mJð Þ
XJ
j¼1

�hhj
mj

kf kL2ðXÞ: ð4:10Þ

Since b > 2, the sum in (4.10) is a geometric series that leads to the inequality
(4.6). Similarly, the assumption b < 2d guarantees that the sum in (4.7) is also
bounded by a convergent geometric series. (

The exponential factor eC in (4.10) with a problem dependent generic constant C
seems to be unavoidable for nonconforming methods, compare [9], [23]. The
question is whether this quantity might be ‘‘large’’ in actual problems. Our nu-
merical experiments done so far (not only those presented in Sect. 6) indicate that
this factor is typically tolerable and does not lead to a significant slow down of the
adaptive method. It is as efficient as in the conforming case.

5. Realization of an Adaptive Version

In this section, we derive an adaptive mesh refinement strategy in close analogy to
the derivation in [7]. Assume that up to the level j� 1 such a strategy has already
led to a triangulation satisfying the assumptions

h�1
s uj � uj�1

�� ��
L2ðsÞ � C uj � uj�1

�� ��
H1ðsÞ; ð5:1Þ

uj � uj�1

�� ��
a � CN�1=d

j kf kL2ðXÞ; ð5:2Þ

where s is an arbitrary element (triangle in 2D or tetrahedron in 3D) and
hs :¼ diamðsÞ. We refer to [12] for a theoretical justification. Inequality (5.1)
means that the finite element correction is locally of high frequency with respect to
the finer triangulation. Inequality (5.2) is the assumption of optimal global ac-
curacy. The assumptions above are stronger than inequality (4.1) in Lemma 4.1.
Considerations similar to those that led to Theorem 4.3 now yield the result

ku�j � ujka � CðmJ Þ
XJ
j¼1

N�1=d
j

mj
kf kL2 : ð5:3Þ
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With this estimate we are in the setting of [7]. Hence, we can apply the same
strategy as suggested there.

The termination criterion developed in [7] is based on a recursion formula similar
to (4.9): Let �j�1 denote an estimate of the discretization error kuj�1 � uka, e.g. an
a posteriori estimator, which can usually be provided by an adaptive multilevel
algorithm. Let dj denote an appropriate estimate of the algebraic error kuj � u�jk.
Then the threshold for terminating the iteration on the level j appears as

dj � dj�1 þ q
TOL

�j�1

Nj

Nj�1

� �1=d
 !ðdþ1Þ=2

�j�1;

where q is a safety factor, q < 1, and TOL is some user prescribed error tolerance
such that �J � TOL is to be reached on the final level J.

In [27] the edge-oriented a posteriori error estimator due to [15] is naturally
transferred to the case of mortar elements. It is based on a hierarchical extension
of the space of linear finite elements, say VkL, by a space of quadratic functions, say
VkQ, living on the edges of the grid Xk. Each quadratic ‘‘bubble function’’ in VkQ
vanishes at the vertices of Xk and is parametrized by its midpoint values on the
edge. Let

VL :¼
YK
k¼1

VkL VQ :¼
YK
k¼1

VkQ; Vh :¼ VL � VQ; Xh ¼ Vh � Kh:

Note that an extension for the Lagrange multipliers is not needed since these are
anyway defined via the traces of the associate subdomain grids.

Then the finite element problem in Xh with uL 2 VkL, uQ 2 VkQ leads to the
algebraic equations:

ALL ALQ BT
L

AQL AQQ BT
Q

BL BQ 0

2
4

3
5 uL

uQ
k

2
4

3
5 ¼

fL
fQ
0

2
4

3
5:

Let x�L ¼ ðu�L; k
�Þ be an approximate solution with linear elements obtained by the

SCMG method. Upon introducing the defects dQ :¼ uQ for the discretization
error and dL :¼ uL � u�L, dk :¼ k � k� for the iterative errors, we arrive at the
system

ALL ALQ BT
L

AQL AQQ BT
Q

BL BQ 0

2
4

3
5 dL

dQ
dk

2
4

3
5 ¼

rL
rQ
rk

2
4

3
5; ð5:4Þ

with the residues
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rL :¼ fL � ALLu�L � BT
Lk�; rQ :¼ fQ � AQLu�L � BT

Qk�; and rk :¼ �BLu�L:

Of course, we do not aim at an exact solution of equation (5.4), but only at a
rough approximation for the mere purpose of mesh refinement. An appropriate
estimator can be obtained from the simpler system

ALL 0 0
0 DQQ 0
0 0 SQ

2
4

3
5 ~ddL

~ddQ
~ddk

2
4

3
5 ¼

rL
rQ
rk

2
4

3
5; ð5:5Þ

where DQQ is just the diagonal part of AQQ and

SQ ¼ BL BQ
� � ALL ALQ

AQL AQQ

� ��1 BT
L

BT
Q

" #
:

As has been shown for shape regular triangulations in [15], the block diagonal
matrix diag fALL;DQQg is spectrally equivalent to the corresponding 2� 2 block
matrix in (5.4). Therefore the stiffness matrices in (5.4) and (5.5) are also spectrally
equivalent; see [19]. As a consequence, the energy norm kdQka of the discretization
error can be estimated roughly by

kdQka � k~ddQkDQQ
:

As usual, the global discretization error estimator is given as the sum over all local
contributions on the edges of the triangulations Xk.

On the basis of this error estimation technique, we suggest the following first step
of our mesh refinement strategy. Let ge be a local error estimator living on the edge
e of Xk, which can be either matching or non-matching. Then those edges with

ge �
1

4
max
e0

ge0 :

are marked for refinement.

Note that due to the decoupling of the defects in (5.5), the defect estimate ~ddk need
not be computed at all. Hence, the adaptive strategy so far does not monitor the
mortar edges in particular. This led us to propose a second step of mesh refinement
strategy. For this purpose, consider the functional

UðuÞ :¼ ðALLu; uÞ � 2ðfL; uÞ

that had already appeared in (3.1). Recall that the solution uL of a saddle point
problem is a minimizer of UðuÞ subject to the constraint Bu ¼ 0. From variational
calculus, we know that
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BT kL ¼ @UðuÞ
@u

����
u¼uL

is the sensitivity of the functional with respect to local changes of uL. Let he be a
sensitivity measure at u ¼ uL related to an edge e: for piecewise constant Lagrange
multipliers as used here we may set

he :¼ BT kL
��
e½uL
e; ð5:6Þ

where ½u
e denotes an average absolute value of the jump of uL at e. In order to
select the ‘‘most sensitive’’ edges (with respect to changes in the constrained
functional), we mark those edges for additional refinement which satisfy

he � 0:95max
e0

he0 :

For the sake of completeness, we mention that we had also experimented with the
quadratic bubbles dQ

��
e¼ uQ

��
e replacing the jumps ½uL
e in (5.6). We obtained

nearly the same numerical results. For this reason we stick to the concept above.

6. Numerical Experiments

In this section, we want to illustrate the performance of our adaptive subspace
cascadic multigrid algorithm (SCMG) with CG as selected smoother. An imple-
mentation of this algorithm is compared with the following two adaptive multi-
level methods:

(i) the best DD/CCG method from [16], and

(ii) the code Kaskade with BPX as preconditioner.

The DD/CCG method is a domain decomposition method combined with casc-
adic multigrid methods on convex subdomains with homogeneous materials; it
also allows for non-matching grids as the method presented herein, but it uses an
indefinite iterative solver. The Kaskade code is an implementation of an additive
multilevel method on matching grids. In 2D the BPX preconditioner could, in
principle, be replaced by a hierarchical basis preconditioner – which has not been
done since our intention is the design of an efficient 3D code.

The outer iterations in SCMG were terminated by the condition
ku� uhka � 0:02kuka, whereas the inner iterations were terminated by the re-
quirement (3.9).

Remark: We wish to explicitly mention that in our actual numerical computa-
tions we have used a subspace entering procedure differing slightly from (3.4): A
relaxation step before the application of the projection Rj is included. Later the
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referees noted that this extra step spoiled our former proof. As a consequence, we
changed the convergence theory slightly in this respect, but did not want to
change all our numerical experiments since the changes are too marginal.

Notorious test problem: We have chosen a relatively simple test problem from the
literature [15] – adding a ‘‘small’’ perturbation term as in [16] in view of possible
comparisons with the alternative preconditioner (3.18) that we abandoned
afterwards. Consider the domain X ¼ ½0; 1
d and the elliptic equation

�divðaðxÞruÞ þ 10�4u ¼ 100 in X;

u ¼ 0 on @X
ð6:1Þ

with material jumps modelled by

aðxÞ ¼ a0 :¼ 1 if x 2 ½0:25; 0:75
d n ½0:375; 0:625
d ,
a1 :¼ 106 otherwise.

�

In order to study the influence of jumps, variations of the coefficient a1 were also
included in our computations.

For the application of mortar elements, the domain X is decomposed into three
subdomains according to the jumps of the diffusion coefficient – see Fig. 6.1. Note
that for the earlier DD/CCG method, these subdomains have to be decomposed
further into convex subdomains; see [16]. As already stated in Sect. 2, the Lag-
range multipliers are attributed to the sides with the smaller diffusion coefficients.
In Fig. 6.2, we compare the non-matching grids arising from the SCMG method
with the matching grids from Kaskade/BPX. Obviously, Kaskade/BPX pro-
duces excess refinements near interfaces between ‘‘fine grid’’ and ‘‘coarse grid’’

Fig. 6.1. Domain decomposition with initial grid and the solution for a1 :¼ 106
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subdomains – an effect that is even more severe in 3D problems. The non-
matching grids and the new SCMG algorithm, however, lead to a more flexible
adaptive algorithm which is also better parallelizable.

In Table 6.1 below we list the numerical results for this problem when solved by
the three adaptive multilevel methods above. Obviously, the new SCMG version
gains a factor of about 3 compared to the older CCG method. The new method
turns out to be also faster than Kaskade/BPX with non-matching grids. We note
that about 60% of the computation time is spent on the two finest grids where
only 2 iteration steps are required.

Next, we studied the dependence of the new method (for d ¼ 2) upon variations of
the jumps in the diffusion coefficients. Results for a1 ¼ 106, 103, and 100, resp., are
presented in Fig. 6.3.

Fig. 6.2. Adaptive grids from KASKADE/BPX (left) and from the SCMG method (right)

Table 6.1. Comparison of three adaptive multilevel methods to solve problem (6.1) with a1 ¼ 106.
[j: level – N : number of variables – acc: energy norm accuracy – itr: number of outer iterations – inn:

number of inner iterations – time: computation time.]

Mortar elements Standard elements

DD /CCG SCMG KASKADE/BPX

j itr N time Itr N acc time inn itr N acc time

1 15 87 0.17 5 87 0.195 0.06 6 4 45 0.386 0.02
2 14 163 0.41 7 173 0.126 0.09 8 4 145 0.256 0.07
3 12 319 0.78 10 333 0.100 0.17 13 5 257 0.120 0.17
4 10 521 1.08 10 537 0.077 0.31 14 4 489 0.081 0.34
5 12 759 1.63 7 771 0.060 0.49 15 6 685 0.086 0.62

6 10 1021 2.33 9 939 0.053 0.72 12 4 973 0.048 1.01
7 6 1657 3.22 5 1559 0.040 1.06 12 4 1821 0.032 1.74
8 12 2717 5.47 4 2435 0.030 1.67 11 3 2477 0.031 2.77
9 6 3463 7.42 2 3455 0.025 2.51 14 3 4153 0.024 4.51
10 6 7109 12.2 2 5683 0.019 4.74 14 2 6313 0.016 7.22
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Finally, we provide results for problem (6.1) with d ¼ 3. The domain X is now
decomposed into 3 subdomains by 2D interfaces that match the jumps of the
diffusion coefficient. As shown in Table 6.2, there is no significant difference in the
behavior of the SCMG method in two and three space dimensions. The only slight
difference is that due to the large size of the algebraic equations on the coarsest
grid, that part is no longer solved directly, but also iteratively. There are more
than half a million unknowns on the finest level.
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